ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal relaxation of magnetic clusters in amorphous Hf_{57}Fe_{43} alloy

81   0   0.0 ( 0 )
 نشر من قبل Damir Pajic
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetization processes in binary magnetic/nonmagnetic amorphous alloy Hf_{57}Fe_{43} are investigated by the detailed measurements of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied with the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained with the superparamagnetic behaviour of the single domain magnetic clusters inside the nonmagnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found out that magnetic clusters occupy the characteristic volume from 25 up to 200 nm3 . The validity of the superparamagnetic model of Hf_{57}Fe_{43} is based on the concentration of iron in the Hf_{100-x}Fe_{43} system that is just below the threshold for the long range magnetic ordering. This work throws more light on magnetic behaviour of other amorphous alloys, too.

قيم البحث

اقرأ أيضاً

Here we examine the role of the amorphous insulating substrate in the thermal relaxation in thin NbN, InO$_x$, and Au/Ni films at temperatures above 5 K. The studied samples are made up of metal bridges on an amorphous insulating layer lying on or su spended above a crystalline substrate. Noise thermometry was used to measure the electron temperature $T_e$ of the films as a function of Joule power per unit of area $P_{2D}$. In all samples, we observe the dependence $P_{2D}propto T_e^n$ with the exponent $nsimeq 2$, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of $P_{2D}(T_e)$ on the length of the amorphous insulating layer is consistent with the linear $T$-dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for the phonon mean free path smaller than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Using direct atomic simulations, the vibration scattering time scales are characterized, and then the nature and the quantitative weight of thermal excitations are investigated in an example system Li2S from its amorphous solid state to its partial-s olid partial-liquid and, liquid states. For the amorphous solid state at 300 K, the vibration scattering time ranges a few femtoseconds to several picoseconds. As a result, both the progagons and diffusons are the main heat carriers and contribute largely to the total thermal conductivity. The enhancement of scattering among vibrations and between vibrations and free ions flow due to the increase of temperature, will lead to a large reduction of the scattering time scale and the acoustic vibrational thermal conductivity, i.e., 0.8 W/mK at 300 K to 0.56 W/mK in the partial solid partial liquid Li2S at 700 K. In this latter state, the thermal conductivity contributed by convection increases to the half of the total, as a result of the usually neglected cross-correlation between the virial term and the free ions flow. The vibrational scattering time can be as large as ~ 1.5 picoseconds yet, and the vibrational conductivity is reduced to a still significant 0.42 W/mK highlighting the unexpected role of acoustic transverse and longitudinal vibrations in liquid Li2S at 1100 K. At this same temperature, the convection heat transfer takes overreaching 0.63 W/mK. Our study provides a fundamental understanding of the thermal excitations at play in amorphous materials from solid to liquid.
Quantifying the correlation between the complex structures of amorphous materials and their physical properties has been a long-standing problem in materials science. In amorphous Si, a representative covalent amorphous solid, the presence of a mediu m-range order (MRO) has been intensively discussed. However, the specific atomic arrangement corresponding to the MRO and its relationship with physical properties, such as thermal conductivity, remain elusive. Here, we solve this problem by combining topological data analysis, machine learning, and molecular dynamics simulations. By using persistent homology, we constructed a topological descriptor that can predict the thermal conductivity. Moreover, from the inverse analysis of the descriptor, we determined the typical ring features that correlated with both the thermal conductivity and MRO. The results provide an avenue for controlling the material characteristics through the topology of nanostructures.
229 - K. Hamaya , T. Koike , T. Taniyama 2005
A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted wi th a single domain model [Phys. Rev. Lett. 95, 217204 (2005)], and the magnetic relaxation, which is similar to that seen in magnetic particles and granular systems, is becoming significant at temperatures above the lower-temperature peak in the temperature dependence of ac susceptibility, supporting the cluster/matrix model reported in our previous work [Phys. Rev. Lett. 94, 147203 (2005)]. Cole-Cole analysis reveals that magnetic interactions between such (Ga,Mn)As clusters are significant at temperatures below the higher-temperature peak in the temperature dependent ac susceptibility. The magnetizations of these films disappear above the temperature showing the higher-temperature peak, which is generally referred to as the Curie temperature. However, we suggest that these combined results are evidence that the temperature is actually the blocking temperature of (Ga,Mn)As clusters with a relatively high hole concentration compared to the (Ga,Mn)As matrix.
Critical points that can be suppressed to zero temperature are interesting because quantum fluctuations have been shown to dramatically alter electron gas properties. Here, the metal formed by Co doping the paramagnetic insulator FeS$_2$, Fe$_{1-x}$C o$_x$S$_2$, is demonstrated to order ferromagnetically at $x>x_c=0.01pm0.005$ where we observe unusual transport, magnetic, and thermodynamic properties. We show that this magnetic semiconductor undergoes a percolative magnetic transition with distinct similarities to the Griffiths phase, including singular behavior at $x_c$ and zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا