ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic relaxation of magnetic clusters in a ferromagnetic (Ga,Mn)As epilayer

230   0   0.0 ( 0 )
 نشر من قبل Kohei Hamaya
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new scenario of the mechanism of intriguing ferromagnetic properties in Mn-doped magnetic semiconductor (Ga,Mn)As is examined in detail. We find that magnetic features seen in zero-field cooled and field cooled magnetizations are not interpreted with a single domain model [Phys. Rev. Lett. 95, 217204 (2005)], and the magnetic relaxation, which is similar to that seen in magnetic particles and granular systems, is becoming significant at temperatures above the lower-temperature peak in the temperature dependence of ac susceptibility, supporting the cluster/matrix model reported in our previous work [Phys. Rev. Lett. 94, 147203 (2005)]. Cole-Cole analysis reveals that magnetic interactions between such (Ga,Mn)As clusters are significant at temperatures below the higher-temperature peak in the temperature dependent ac susceptibility. The magnetizations of these films disappear above the temperature showing the higher-temperature peak, which is generally referred to as the Curie temperature. However, we suggest that these combined results are evidence that the temperature is actually the blocking temperature of (Ga,Mn)As clusters with a relatively high hole concentration compared to the (Ga,Mn)As matrix.

قيم البحث

اقرأ أيضاً

Ferromagnetic semiconductors promise the extension of metal-based spintronics into a material system that combines widely tunable electronic, optical, and magnetic properties. Here, we take steps towards realizing that promise by achieving independen t control of electronic doping in the ferromagnetic semiconductor (Ga,Mn)As. Samples are comprised of superlattices of 0.5 monolayer (ML) MnAs alternating with 20 ML GaAs and are grown by low temperature (230 C) atomic layer epitaxy (ALE). This allows for the reduction of excess As incorporation and hence the number of charge-compensating As-related defects. We grow a series of samples with either Be or Si doping in the GaAs spacers (p- and n-type dopants, respectively), and verify their structural quality by in situ reflection high-energy electron diffraction (RHEED) and ex situ x-ray diffraction. Magnetization measurements reveal ferromagnetic behavior over the entire doping range, and show no sign of MnAs precipitates. Finally, magneto-transport shows the giant planar Hall effect and strong (20%) resistance fluctuations that may be related to domain wall motion.
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with perio dicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be sensitive to the orientation of the current with respect to the crystalline axes. The dependence of the spin-orbit effective magnetic field on the direction and magnitude of the current is determined from the shifts in the magnetization switching angle. We find that the strain induced effective magnetic field is about three times as large as the Rashba induced magnetic field in our GaMnAs devices.
We have studied the magnetic reversal of L-shaped nanostructures fabricated from (Ga,Mn)As. The strain relaxation due to the lithographic patterning results in each arm having a uniaxial magnetic anisotropy. Our analysis confirms that the magnetic re versal takes place via a combination of coherent rotation and domain wall propagation with the domain wall positioned at the corner of the device at intermediate stages of the magnetic hysteresis loops. The domain wall energy can be extracted from our analysis. Such devices have found implementation in studies of current induced domain wall motion and have the potential for application as non-volatile memory elements.
We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy ab ove a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا