ﻻ يوجد ملخص باللغة العربية
The $gamma to alpha$ isostructural transition in the Ce$_{0.9-x}$La$_x$Th$_{0.1}$ system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration $0.10 leq x_c leq 0.14$. At the tricritical point, the coefficient of the linear $T$ term in the specific heat $gamma$ and the magnetic susceptibility start to increase rapidly near $x$ = 0.14 and gradually approaches large values at $x$=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near $x_c$, the Wilson ratio, $R_W$, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing.
We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. U
The $alpha$-$gamma$ transition in cerium has been studied in both zero and finite temperature by Gutzwiller density functional theory. We find that the first order transition between $alpha$ and $gamma$ phases persists to the zero temperature with ne
Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are de
We report on high-resolution acoustic, specific-heat and thermal expansion measurements in the vicinity of the antiferromagnetic phase transition at T_N = 1.88 K on a high-quality single crystal of the natural mineral azurite. A detailed investigatio
In this Letter we present evidences of the occurrence of a tricritical filling transition for an Ising model in a linear wedge. We perform Monte Carlo simulations in a double wedge where antisymmetric fields act at the top and bottom wedges, decorate