ترغب بنشر مسار تعليمي؟ اضغط هنا

Tricritical Phenomena at the Cerium $gamma to alpha$ Transition

84   0   0.0 ( 0 )
 نشر من قبل Bogdan Mihaila
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $gamma to alpha$ isostructural transition in the Ce$_{0.9-x}$La$_x$Th$_{0.1}$ system is measured as a function of La alloying using specific heat, magnetic susceptibility, resistivity, thermal expansivity/striction measurements. A line of discontinuous transitions, as indicated by the change in volume, decreases exponentially from 118 K to close to zero with increasing La doping and the transition changes from being first-order to continuous at a critical concentration $0.10 leq x_c leq 0.14$. At the tricritical point, the coefficient of the linear $T$ term in the specific heat $gamma$ and the magnetic susceptibility start to increase rapidly near $x$ = 0.14 and gradually approaches large values at $x$=0.35 signifying that a heavy Fermi-liquid state evolves at large doping. Near $x_c$, the Wilson ratio, $R_W$, has a value of 3.0, signifying the presence of magnetic fluctuations. Also, the low-temperature resistivity shows that the character of the low-temperature Fermi-liquid is changing.


قيم البحث

اقرأ أيضاً

We emphasize, on the basis of experimental data and theoretical calculations, that the entropic stabilization of the gamma-phase is the main driving force of the alpha-gamma transition of cerium in a wide temperature range below the critical point. U sing a formulation of the total energy as a functional of the local density and of the f-orbital local Greens functions, we perform dynamical mean-field theory calculations within a new implementation based on the multiple LMTO method, which allows to include semi-core states. Our results are consistent with the experimental energy differences and with the qualitative picture of an entropy-driven transition, while also confirming the appearance of a stabilization energy of the alpha phase as the quasiparticle Kondo resonance develops.
The $alpha$-$gamma$ transition in cerium has been studied in both zero and finite temperature by Gutzwiller density functional theory. We find that the first order transition between $alpha$ and $gamma$ phases persists to the zero temperature with ne gative pressure. By further including the entropy contributed by both electronic quasi-particles and lattice vibration, we obtain the total free energy at given volume and temperature, from which we obtain the $alpha$-$gamma$ transition from the first principle calculation. We also computed the phase diagram and pressure versus volume isotherms of cerium at finite temperature and pressure, finding excellent agreement with the experiments. Our calculation indicate that both the electronic entropy and lattice vibration entropy plays important role in the $alpha$-$gamma$ transition.
Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are de scribed by a Hubbard-type on-site Coulomb repulsion parameter. A single parameter of $U^/prime$=4 eV yields excellent results for crystal structures, band gaps, and thermodynamic stability for both Ce2S3 allotropes. This approach gives insights in the difference in color of brownish-black alpha-Ce2S3 and dark red gamma-Ce2S3. The calculations predict that both Ce2S3 modifications are insulators with optical gaps of 0.8 eV (alpha-phase) and 1.8 eV (gamma-phase). The optical gaps are determined by direct electronic excitations at k=Gamma from localized and occupied Ce 4f-orbitals into empty Ce 5d-states. The f-states are situated between the valence and conduction bands. The difference of 1 eV between the optical gaps of the two Ce2S3 modifications is explained by different coordinations of the cerium cations by sulfur anions. For both Ce2S3 modifications the calculations yield an effective local magnetic moment of 2.6 $mu_B$ per cerium cation, which is in agreement with measurements. The electronic energy of the alpha-phase is computed to be 6 kJ/mol lower than that of the gamma-phase, which is consistent with the thermodynamic stability of the two allotropes.
We report on high-resolution acoustic, specific-heat and thermal expansion measurements in the vicinity of the antiferromagnetic phase transition at T_N = 1.88 K on a high-quality single crystal of the natural mineral azurite. A detailed investigatio n of the critical contribution to the various quantities at T_N is presented. The set of critical exponents and amplitude ratios of the singular contributions above and below the transition indicate that the system can be reasonably well described by a three-dimensional Heisenberg antiferromagnet.
In this Letter we present evidences of the occurrence of a tricritical filling transition for an Ising model in a linear wedge. We perform Monte Carlo simulations in a double wedge where antisymmetric fields act at the top and bottom wedges, decorate d with specific field acting only along the wegde axes. A finite-size scaling analysis of these simulations shows a novel critical phenomenon, which is distinct from the critical filling. We adapt to tricritical filling the phenomenological theory which successfully was applied to the finite-size analysis of the critical filling in this geometry, observing good agreement between the simulations and the theoretical predictions for tricritical filling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا