ﻻ يوجد ملخص باللغة العربية
An outstanding topic on noise phenomena is the occurrence of peaked structures in many natural systems in a wide range 10^-1 - 10^6 Hz. All existing theories failed to explain this issue. The present theory based on first prin-ciple statistics of elementary events clustered in time-amplitude correlated large avalanches leads to a noise spectral power master equation suitable for any peaked noise spectra. The excellent agreement with our current noise experiments in high Tc superconductors in the dendritic regime and with optical noise experiments in E.coli demonstrates firstly that avalanche correlation is the physical source of spectral peaks.
We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of th
Crackling noise is a common feature in many dynamic systems [1-9], the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the p
The impact of bound states in Landauer-Buttiker scattering approach to non-equilibrium quantum transport is investigated. We show that the noise power at frequency $ u$ is sensitive to all bound states with energies $omega_b$ satisfying $|omega_b| <
Financial correlation matrices measure the unsystematic correlations between stocks. Such information is important for risk management. The correlation matrices are known to be ``noise dressed. We develop a new and alternative method to estimate this
As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys iconic status in the theory of non-equilibrium phase transitions. Here, we focus on the time dependence of the total number of particles on a 1-dimensi