ﻻ يوجد ملخص باللغة العربية
As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys iconic status in the theory of non-equilibrium phase transitions. Here, we focus on the time dependence of the total number of particles on a 1-dimensional open lattice, and its power spectrum. Using both Monte Carlo simulations and analytic methods, we explore its behavior in different characteristic regimes. In the maximal current phase and on the coexistence line (between high/low density phases), the power spectrum displays algebraic decay, with exponents -1.62 and -2.00, respectively. Deep within the high/low density phases, we find pronounced emph{oscillations}, which damp into power laws. This behavior can be understood in terms of driven biased diffusion with conserved noise in the bulk.
We revisit the totally asymmetric simple exclusion process with open boundaries (TASEP), focussing on the recent discovery by de Gier and Essler that the model has a dynamical transition along a nontrivial line in the phase diagram. This line coincid
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with an amplitude large compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle d
We study the dynamics of condensation of the inclusion process on a one-dimensional periodic lattice in the thermodynamic limit, generalising recent results on finite lattices for symmetric dynamics. Our main focus is on totally asymmetric dynamics w
We study the probability distribution of entanglement in the Quantum Symmetric Simple Exclusion Process, a model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol where the system is initialized in
We numerically study the large deviation function of the total current, which is the sum of local currents over all bonds, for the symmetric and asymmetric simple exclusion processes with open boundary conditions. We estimate the generating function