ﻻ يوجد ملخص باللغة العربية
Many fluctuating systems consist of macroscopic structures in addition to noisy signals. Thus, for this class of fluctuating systems, the scaling behaviors are very complicated. Such phenomena are quite commonly observed in Nature, ranging from physics, chemistry, geophysics, even to molecular biology and physiology. In this paper, we take an extensive analytical study on the ``generalized detrended fluctuation analysis method. For continuous fluctuating systems in arbitrary dimensions, we not only derive the explicit and exact expression of macroscopic structures, but also obtain the exact relations between the detrended variance functions and the correlation function. Besides, we undertake a general scaling analysis, applicable for this class of fluctuating systems in any dimensions. Finally, as an application, we discuss some important examples in interfacial superroughening phenomena.
This paper has been withdrawn
The structure and energetics of superflow around quantized vortices, and the motion inherited by these vortices from this superflow, are explored in the general setting of the superfluidity of helium-four in arbitrary dimensions. The vortices may be
A quantitative evaluation of the influence of sampling on the numerical fractal analysis of experimental profiles is of critical importance. Although this aspect has been widely recognized, a systematic analysis of the sampling influence is still lac
First we discuss the definition of the instantaneous current in interacting particle systems, in particular in mass-energy systems and we point out its role in the derivation of the hydrodynamics. Later we present some geometrical structures of the i
We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 rho}) in Fourier space, as a function of rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and