ﻻ يوجد ملخص باللغة العربية
A quantitative evaluation of the influence of sampling on the numerical fractal analysis of experimental profiles is of critical importance. Although this aspect has been widely recognized, a systematic analysis of the sampling influence is still lacking. Here we present the results of a systematic analysis of synthetic self-affine profiles in order to clarify the consequences of the application of a poor sampling (up to 1000 points) typical of Scanning Probe Microscopy for the characterization of real interfaces and surfaces. We interprete our results in term of a deviation and a dispersion of the measured exponent with respect to the ``true one. Both the deviation and the dispersion have always been disregarded in the experimental literature, and this can be very misleading if results obtained from poorly sampled images are presented. We provide reasonable arguments to assess the universality of these effects and we propose an empirical method to take them into account. We show that it is possible to correct the deviation of the measured Hurst exponent from the true one and give a reasonable estimate of the dispersion error. The last estimate is particularly important in the experimental results since it is an intrinsic error that depends only on the number of sampling points and can easily overwhelm the statistical error. Finally, we test our empirical method calculating the Hurst exponent for the well-known 1+1 dimensional directed percolation profiles, with a 512-point sampling.
We use the multifractal detrended fluctuation analysis (MF-DFA) to study the electrical discharge current fluctuations in plasma and show that it has multifractal properties and behaves as a weak anti-correlated process. Comparison of the MF-DFA resu
The transverse-field Ising model on the Sierpinski fractal, which is characterized by the fractal dimension $log_2^{~} 3 approx 1.585$, is studied by a tensor-network method, the Higher-Order Tensor Renormalization Group. We analyze the ground-state
The evolution and spatial structure of displacement fronts in fractures with self-affine rough walls are studied by numerical simulations. The fractures are open and the two faces are identical but shifted along their mean plane, either parallel or p
Many fluctuating systems consist of macroscopic structures in addition to noisy signals. Thus, for this class of fluctuating systems, the scaling behaviors are very complicated. Such phenomena are quite commonly observed in Nature, ranging from physi
Scaling properties in financial fluctuations are reviewed from the standpoint of statistical physics. We firstly show theoretically that the balance of demand and supply enhances fluctuations due to the underlying phase transition mechanism. By analy