ﻻ يوجد ملخص باللغة العربية
Bose gases in rotating optical lattices combine two important topics in quantum physics: superfluid rotation and strong correlations. In this paper, we examine square two-dimensional systems at zero temperature comprised of strongly repulsive bosons with filling factors of less than one atom per lattice site. The entry of vortices into the system is characterized by jumps of 2 pi in the phase winding of the condensate wavefunction. A lattice of size L X L can have at most L-1 quantized vortices in the lowest Bloch band. In contrast to homogeneous systems, angular momentum is not a good quantum number since the continuous rotational symmetry is broken by the lattice. Instead, a quasi-angular momentum captures the discrete rotational symmetry of the system. Energy level crossings indicative of quantum phase transitions are observed when the quasi-angular momentum of the ground-state changes.
Disorder, prevalent in nature, is intimately involved in such spectacular effects as the fractional quantum Hall effect and vortex pinning in type-II superconductors. Understanding the role of disorder is therefore of fundamental interest to material
We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental obse
We study the scattering of a matter-wave from an interacting system of bosons in an optical lattice, focusing on the strong-interaction regime. Analytical expressions for the many-body scattering cross section are derived from a strong-coupling expan
We analyze a system of two-component fermions which interact via a Feshbach resonance in the presence of a three-dimensional lattice potential. By expressing a two-channel model of the resonance in the basis of Bloch states appropriate for the lattic
We establish the phase diagram of the strongly-interacting Bose-Hubbard model defined on a two-leg ladder geometry in the presence of a homogeneous flux. Our work is motivated by a recent experiment [Atala et al., Nature Phys. 10, 588 (2014)], which