ﻻ يوجد ملخص باللغة العربية
The computer simulations of fluctuational dynamics of the long overlap Josephson junction in the frame of the sine-Gordon model with a white noise source have been performed. It has been demonstrated that for the case of constant critical current density the mean life time (MLT) of superconductive state increases with increasing the junctions length and for homogeneous bias current distribution MLT tends to a constant, while for inhomogeneous current distribution MLT quickly decreases after approaching of a few Josephson lengths. The mean voltage versus junction length behaves inversely in comparison with MLT.
We study the transient statistical properties of short and long Josephson junctions under the influence of thermal and correlated fluctuations. In particular, we investigate the lifetime of the superconductive metastable state finding the presence of
We show that some of the Josephson couplings of junctions arranged to form an inhomogeneous network undergo a non-perturbative renormalization provided that the networks connectivity is pertinently chosen. As a result, the zero-voltage Josephson crit
Nonreciprocal microwave transmission through a long Josephson junction in the flux-flow regime is studied analytically and numerically within the framework of the perturbed sine-Gordon model. We demonstrate that the maximum attenuation of the transmi
We consider an asymmetric 0-pi Josephson junction consisting of 0 and pi regions of different lengths L_0 and L_pi. As predicted earlier this system can be described by an effective sine-Gordon equation for the spatially averaged phase psi so that th
Fractional Josephson vortices carry a magnetic flux Phi, which is a fraction of the magnetic flux quantum Phi_0 ~ 2.07x10^{-15} Wb. Their properties are very different from the properties of the usual integer fluxons. In particular, fractional vortic