ﻻ يوجد ملخص باللغة العربية
We show that optical pumping of electron spins in individual InGaAs quantum dots leads to strong nuclear polarisation that we measure via the Overhauser shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find a strongly non-monotonous dependence of the OHS on the applied magnetic field, with a maximum nuclear polarisation of 40% for intermediate magnetic fields. We observe that the OHS is larger for nuclear fields anti-parallel to the external field than in the parallel configuration. A bistability in the dependence of the OHS on the spin polarization of the optically injected electrons is found. All our findings are qualitatively understood with a model based on a simple perturbative approach.
We demonstrate that bistability of the nuclear spin polarization in optically pumped semiconductor quantum dots is a general phenomenon possible in dots with a wide range of parameters. In experiment, this bistability manifests itself via the hystere
We study non-adiabatic two-parameter charge and spin pumping through a single-level quantum dot with Coulomb interaction. For the limit of weak tunnel coupling and in the regime of pumping frequencies up to the tunneling rates, $Omega lesssim Gamma/h
Nuclear polarization dynamics are measured in the nuclear spin bi-stability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-pro
As an alternative to commonly used electrical methods, we have investigated the optical pumping of charged exciton complexes addressing impurity related transitions with photons of the appropriate energy. Under these conditions, we demonstrate that t
We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A$^0$ with an effective spin $J=1$