ﻻ يوجد ملخص باللغة العربية
Nuclear polarization dynamics are measured in the nuclear spin bi-stability regime in a single optically pumped InGaAs/GaAs quantum dot. The controlling role of nuclear spin diffusion from the dot into the surrounding material is revealed in pump-probe measurements of the non-linear nuclear spin dynamics. We measure nuclear spin decay times in the range 0.2-5 sec, strongly dependent on the optical pumping time. The long nuclear spin decay arises from polarization of the material surrounding the dot by spin diffusion for long (>5sec) pumping times. The time-resolved methods allow the detection of the unstable nuclear polarization state in the bi-stability regime otherwise undetectable in cw experiments.
Electric charge detection by atomic force microscopy (AFM) with single- electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QD). The oscillating AFM tip modulates the energy of the
We show that optical pumping of electron spins in individual InGaAs quantum dots leads to strong nuclear polarisation that we measure via the Overhauser shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find a strongly non-mon
The mesoscopic spin system formed by the 10E4-10E6 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is
A highly asymmetric dynamic nuclear spin pumping is observed in a single self assembled InGaAs quantum dot subject to resonant optical pumping of the neutral exciton transition leading to a large maximum polarization of 54%. This dynamic nuclear pola
We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the d