ﻻ يوجد ملخص باللغة العربية
Here we present a study of stochastic resonance in an extended FitzHugh-Nagumo system with a field dependent activator diffusion. We show that the system response (here measured through the output signal-to-noise ratio) is enhanced due to the particular form of the non-homogeneous coupling. Such a result supports previous ones obtained in a simpler scalar reaction-diffusion system and shows that such an enhancement, induced by the field dependent diffusion -or selective coupling-, is a robust phenomenon.
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and
We analyze the dynamics of the FitzHugh-Nagumo (FHN) model in the presence of colored noise and a periodic signal. Two cases are considered: (i) the dynamics of the membrane potential is affected by the noise, (ii) the slow dynamics of the recovery v
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method i
Collective electron transport causes a weakly coupled semiconductor superlattice under dc voltage bias to be an excitable system with $2N+2$ degrees of freedom: electron densities and fields at $N$ superlattice periods plus the total current and the
We investigate a ring of $N$ FitzHugh--Nagumo elements coupled in emph{phase-repulsive} fashion and submitted to a (subthreshold) common oscillatory signal and independent Gaussian white noises. This system can be regarded as a reduced version of the