ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo modelling of the spherically averaged structure factor of a many-electron system

91   0   0.0 ( 0 )
 نشر من قبل J. M. Pitarke
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction and exchange-correlation contributions to the ground-state energy of an arbitrary many-electron system can be obtained from a spherical average of the wavevector-dependent diagonal structure factor (SF). We model the continuous-k spherically averaged SF using quantum Monte Carlo calculations in finite simulation cells. We thus derive a method that allows to substantially reduce the troublesome Coulomb finite-size errors that are usually present in ground-state energy calculations. To demonstrate this, we perform variational Monte Carlo calculations of the interaction energy of the homogeneous electron gas. The method is, however, equally applicable to arbitrary inhomogeneous systems.

قيم البحث

اقرأ أيضاً

Two different Reverse Monte Carlo strategies, RMC++ and RMCPOW, have been compared for determining the microscopic structure of some liquid and amorphous solid systems on the basis of neutron diffraction measurements. The first, $g(r)$ route, exploit s the isotropic nature of liquids and calculates the total scattering structure factor, $S(Q)$, via a one-dimensional Fourier transform of the radial distribution function. The second, called crystallography route, is based on the direct calculation of $S(Q)$ in the reciprocal space from the atomic positions in the simulation box. We describe these two methods and apply them to four disordered systems of increasing complexity. The two approaches yield structures in good agreement to the level of two- and three body correlations; consequently, it has been proven that the crystallography route can also deal perfectly with disordered materials. This finding is important for future studies of liquids confined in porous media, where handling Bragg and diffuse scattering simultaneously is unavoidable.
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the trends of well-converged plane-wave DFT calculations for the size dependence of the optical gap, but they predict gaps that are 1-2 eV higher. They confirm that quantum confinement effects disappear in diamondoids larger than 1 nm, which have gaps below that of bulk diamond. Our QMC calculations predict a small exciton binding energy and a negative electron affinity (NEA) for diamondoids up to 1 nm, resulting from the delocalized nature of the lowest unoccupied molecular orbital. The NEA suggests a range of possible applications of diamondoids as low-voltage electron emitters.
In a recent Letter we introduced Hellmann-Feynman operator sampling in diffusion Monte Carlo calculations. Here we derive, by evaluating the second derivative of the total energy, an efficient method for the calculation of the static density-response function of a many-electron system. Our analysis of the effect of the nodes suggests that correlation is described correctly and we find that the effect of the nodes can be dealt with.
An ab-initio method for determining the dynamical structure function of an interacting many--body quantum system has been devised by combining a generalized integral transform method with Quantum Monte Carlo methods. As a first application, the coher ent and, separately, the incoherent excitation spectrum of bulk atomic 4He has been computed, both in the low and intermediate momentum range. The peculiar form of the kernel in the integral transform of the dynamical structure function allows to predict, without using any model, both position and width of the collective excitations in the maxon--roton region, as well as the second collective peak. A prediction of the dispersion of the single--particle modes described by the incoherent part is also presented.
We report all-electron variational and diffusion quantum Monte Carlo (VMC and DMC) calculations for the noble gas atoms He, Ne, Ar, Kr, and Xe. The calculations were performed using Slater-Jastrow wave functions with Hartree-Fock single-particle orbi tals. The quality of both the optimized Jastrow factors and the nodal surfaces of the wave functions declines with increasing atomic number Z, but the DMC calculations are tractable and well behaved in all cases. We discuss the scaling of the computational cost of DMC calculations with Z.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا