ترغب بنشر مسار تعليمي؟ اضغط هنا

The Raman Fingerprint of Graphene

71   0   0.0 ( 0 )
 نشر من قبل Francesco Mauri
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphenes electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area.



قيم البحث

اقرأ أيضاً

Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to 17 layers were tentatively attributed ABC sequences although the Raman fingerprint of rhombohedral multilayer graphene is currently unknown and the 2D resonant Raman spectrum of Bernal graphite not understood. We provide a first principles description of the 2D Raman peak in three and four layers graphene (all stackings) as well as in Bernal, rhombohedral and an alternation of Bernal and rhombohedral graphite. We give practical prescriptions to identify long range sequences of ABC multi-layer graphene. Our work is a prerequisite to experimental non-destructive identification and synthesis of rhombohedral graphite.
We report strong variations in the Raman spectra for different single-layer graphene samples obtained by micromechanical cleavage, which reveals the presence of excess charges, even in the absence of intentional doping. Doping concentrations up to ~1 0^13 cm-2 are estimated from the G peak shift and width, and the variation of both position and relative intensity of the second order 2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less than 1 micron.
153 - M. Bruna , A. K. Ott , M. Ijas 2014
We investigate the evolution of the Raman spectrum of defected graphene as a function of doping. Polymer electrolyte gating allows us to move the Fermi level up to 0.7eV, as monitored by textit{in-situ} Hall-effect measurements. For a given number of defects, we find that the intensities of the D and D peaks decrease with increasing doping. We assign this to an increased total scattering rate of the photoexcited electrons and holes, due to the doping-dependent strength of electron-electron scattering. We present a general relation between D peak intensity and defects valid for any doping level
The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.
The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The rel ative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا