ﻻ يوجد ملخص باللغة العربية
We propose an on-chip optical waveguide for Bose-Einstein condensates based on the evanescent light fields created by surface states of a photonic crystal. It is shown that the modal properties of these surface states can be tailored to confine the condensate at distances from the chip surface significantly longer that those that can be reached by using conventional index-contrast guidance. We numerically demonstrate that by index-guiding the surface states through two parallel waveguides, the atomic cloud can be confined in a two-dimensional trap at about 1$mu$m above the structure using a power of 0.1mW.
We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly confining direction into a purely m
We present a permanent magnetic film atom chip based on perpendicularly magnetized TbGdFeCo films. This chip routinely produces a Bose-Einstein condensate (BEC) of 10^5 87Rb atoms using the magnetic film potential. Fragmentation observed near the fil
A novel terahertz hybrid waveguide chip consisting of silicon photonic crystals sandwiched in parallel gold plates is developed. Both simulation and experimental results demonstrate that the hybrid waveguide offers a wide single-mode transmission win
The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10 and 40% and provides a r
We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allo