ترغب بنشر مسار تعليمي؟ اضغط هنا

Photonic crystal optical waveguides for on-chip Bose-Einstein condensates

64   0   0.0 ( 0 )
 نشر من قبل Jorge Bravo-Abad
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an on-chip optical waveguide for Bose-Einstein condensates based on the evanescent light fields created by surface states of a photonic crystal. It is shown that the modal properties of these surface states can be tailored to confine the condensate at distances from the chip surface significantly longer that those that can be reached by using conventional index-contrast guidance. We numerically demonstrate that by index-guiding the surface states through two parallel waveguides, the atomic cloud can be confined in a two-dimensional trap at about 1$mu$m above the structure using a power of 0.1mW.


قيم البحث

اقرأ أيضاً

136 - Y. Shin , C. Sanner , G.-B. Jo 2005
We have used a microfabricated atom chip to split a single Bose-Einstein condensate of sodium atoms into two spatially separated condensates. Dynamical splitting was achieved by deforming the trap along the tightly confining direction into a purely m agnetic double-well potential. We observed the matter wave interference pattern formed upon releasing the condensates from the microtraps. The intrinsic features of the quartic potential at the merge point, such as zero trap frequency and extremely high field-sensitivity, caused random variations of the relative phase between the two split condensates. Moreover, the perturbation from the abrupt change of the trapping potential during the splitting was observed to induce vortices.
We present a permanent magnetic film atom chip based on perpendicularly magnetized TbGdFeCo films. This chip routinely produces a Bose-Einstein condensate (BEC) of 10^5 87Rb atoms using the magnetic film potential. Fragmentation observed near the fil m surface provides unique opportunities to study BEC in a disordered potential. We show this potential can be used to simultaneously produce multiple spatially separated condensates. We exploit part of this potential to realize a time-dependent double well system for splitting a condensate.
A novel terahertz hybrid waveguide chip consisting of silicon photonic crystals sandwiched in parallel gold plates is developed. Both simulation and experimental results demonstrate that the hybrid waveguide offers a wide single-mode transmission win dow with low group velocity dispersion and low loss. This compact, substrate-free terahertz chip would play a significant role in broadband, dense-integrated, multi-functional terahertz systems.
The recombination of two split Bose-Einstein condensates on an atom chip is shown to result in heating which depends on the relative phase of the two condensates. This heating reduces the number of condensate atoms between 10 and 40% and provides a r obust way to read out the phase of an atom interferometer without the need for ballistic expansion. The heating may be caused by the dissipation of dark solitons created during the merging of the condensates.
We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allo ws for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with L. For strong interaction (or large L), the system displays a transition towards a time dependent flow with an algebraic decay of the time averaged transmission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا