ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Transport of Bose-Einstein Condensates Through Waveguides with Disorder

100   0   0.0 ( 0 )
 نشر من قبل Tobias Paul
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allows for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with L. For strong interaction (or large L), the system displays a transition towards a time dependent flow with an algebraic decay of the time averaged transmission.



قيم البحث

اقرأ أيضاً

We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between two BECs and that the effect is robust. We demonstrate it in 1D, 2D and 3D at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.
We investigate the time taken for global collapse by a dipolar Bose-Einstein condensate. Two semi-analytical approaches and exact numerical integration of the mean-field dynamics are considered. The semi-analytical approaches are based on a Gaussian ansatz and a Thomas-Fermi solution for the shape of the condensate. The regimes of validity for these two approaches are determined, and their predictions for the collapse time revealed and compared with numerical simulations. The dipolar interactions introduce anisotropy into the collapse dynamics and predominantly lead to collapse in the plane perpendicular to the axis of polarization.
Elongated Bose-Einstein condensates (BECs) exhibit strong spatial phase fluctuations even well below the BEC transition temperature. We demonstrate that atom interferometers using such condensates are robust against phase fluctuations, i.e. the relat ive phase of the split condensate is reproducible despite axial phase fluctuations. However, larger phase fluctuations limit the coherence time, especially in the presence of some asymmetries in the two wells of the interferometer.
We discuss the application of Bose-Einstein condensates (BECs) as sensors for magnetic and electric fields. In an experimental demonstration we have brought one-dimensional BECs close to micro-fabricated wires on an atom chip and thereby reached a se nsitivity to potential variations of ~10e-14eV at 3 micron spatial resolution. We demonstrate the versatility of this sensor by measuring a two-dimensional magnetic field map 10 micron above a 100-micron-wide wire. We show how the transverse current-density component inside the wire can be reconstructed from such maps. The field sensitivity in dependence on the spatial resolution is discussed and further improvements utilizing Feshbach resonances are outlined.
We propose an inverse method to accelerate without final excitation the adiabatic transport of a Bose Einstein condensate. The method, applicable to arbitrary potential traps, is based on a partial extension of the Lewis-Riesenfeld invariants, and pr ovides transport protocols that satisfy exactly the no-excitation conditions without constraints or approximations. This inverse method is complemented by optimizing the trap trajectory with respect to different physical criteria and by studying the effect of noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا