ﻻ يوجد ملخص باللغة العربية
LaAlO3/SrTiO3 structures showing high mobility conduction have recently aroused large expectations as they might represent a major step towards the conception of all-oxide electronics devices. For the development of these technological applications a full understanding of the dimensionality and origin of the conducting electronic system is crucial. To shed light on this issue, we have investigated the magnetotransport properties of a LaAlO3 layer epitaxially grown at low oxygen pressure on a TiO2-terminated (001)-SrTiO3 substrate. In agreement with recent reports, a low-temperature mobility of about 10^4 cm2/Vs has been found. We conclusively show that the electronic system is three-dimensional, excluding any interfacial confinement of carriers. We argue that the high-mobility conduction originates from the doping of SrTiO3 with oxygen vacancies and that it extends over hundreds of microns into the SrTiO3 substrate. Such high mobility SrTiO3-based heterostructures have a unique potential for electronic and spintronics devices.
We have investigated the dimensionality and origin of the magnetotransport properties of LaAlO3 films epitaxially grown on TiO2-terminated SrTiO3(001) substrates. High mobility conduction is observed at low deposition oxygen pressures (PO2 < 10^-5 mb
In recent years, striking discoveries have revealed that two-dimensional electron liquids (2DEL) confined at the interface between oxide band-insulators can be engineered to display a high mobility transport. The recognition that only few interfaces
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar ox
The hysteretic piezoelectric response in LaAlO3/SrTiO3 heterostructures can provide important insights into the mechanism for interfacial conductance and its metastability under various conditions. We have performed a variety of nonlocal piezoelectri
As discovered by Ohtomo et al., a large sheet charge density with high mobility exists at the interface between SrTiO3 and LaAlO3. Based on transport, spectroscopic and oxygen-annealing experiments, we conclude that extrinsic defects in the form of o