ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures

100   0   0.0 ( 0 )
 نشر من قبل Marco Salluzzo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.

قيم البحث

اقرأ أيضاً

A detailed defect energy level map was investigated for heterostructures of 26 unit cells of LaAlO3 on SrTiO3 prepared at a low oxygen partial pressure of 10-6 mbar. The origin is attributed to the presence of dominating oxygen defects in SrTiO3 subs trate. Using femtosecond laser spectroscopy, the transient absorption and relaxation times for various transitions were determined. An ultrafast relaxation process of 2-3 picosecond from the conduction band to the closest defect level and a slower process of 70-92 picosecond from conduction band to intra-band defect level were observed. The results are discussed on the basis of propose defect-band diagram.
In heterostructures of LaAlO3 (LAO) and SrTiO3 (STO), two nonmagnetic insulators, various forms of magnetism have been observed [1-7], which may [8, 9] or may not [10] arise from interface charge carriers that migrate from the LAO to the interface in an electronic reconstruction [11]. We image the magnetic landscape [5] in a series of n-type samples of varying LAO thickness. We find ferromagnetic patches that appear only above a critical thickness, similar to that for conductivity [12]. Consequently we conclude that an interface reconstruction is necessary for the formation of magnetism. We observe no change in ferromagnetism with gate voltage, and detect ferromagnetism in a non-conducting p-type sample, indicating that the carriers at the interface do not need to be itinerant to generate magnetism. The fact that the ferromagnetism appears in isolated patches whose density varies greatly between samples strongly suggests that disorder or local strain induce magnetism in a population of the interface carriers.
Here we investigate LaAlO_3-SrTiO_3 heterostructure withdelta-doping of the interface by LaMnO_3 at less than one monolayer. This doping strongly inhibits the formation of mobile electron layer at the interface. This results in giant increase of the resistance and the thermopower of the heterostructure. Several aspects of this phenomena are investigated. A model to calculate the carrier concentration is presented and effect of doping and detailed temperature dependence is analyzed in terms of model parameters and the weak-scattering theory. The large enhancement of thermopower is attributed to the increased spin and orbital entropy originating from the LaMnO_3 mono-layer.
Using polarized neutron reflectometry (PNR) we measured the neutron spin dependent reflectivity from four LaAlO3/SrTiO3 superlattices. This experiment implies that the upper limit for the magnetization induced by an 11 T magnetic field at 1.7 K is 2 emu/cm3. SQUID magnetometry of the superlattices sporadically finds an enhanced moment, possibly due to experimental artifacts. These observations set important restrictions on theories which imply a strongly enhanced magnetism at the interface between LaAlO3 and SrTiO3.
We have investigated the dimensionality and origin of the magnetotransport properties of LaAlO3 films epitaxially grown on TiO2-terminated SrTiO3(001) substrates. High mobility conduction is observed at low deposition oxygen pressures (PO2 < 10^-5 mb ar) and has a three-dimensional character. However, at higher PO2 the conduction is dramatically suppressed and nonmetallic behavior appears. Experimental data strongly support an interpretation of these properties based on the creation of oxygen vacancies in the SrTiO3 substrates during the growth of the LaAlO3 layer. When grown on SrTiO3 substrates at low PO2, other oxides generate the same high mobility as LaAlO3 films. This opens interesting prospects for all-oxide electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا