ﻻ يوجد ملخص باللغة العربية
Landaus theory of phase transitions is adapted to treat independently relaxing regions in complex systems using nanothermodynamics. The order parameter we use governs the thermal fluctuations, not a specific static structure. We find that the entropy term dominates the thermal behavior, as is reasonable for disordered systems. Consequently, the thermal equilibrium occurs at the internal-energy maximum, so that the minima in a potential-energy landscape have negligible influence on the dynamics. Instead the dynamics involves normal thermal fluctuations about the free-energy minimum, with a time scale that is governed by the internal-energy maximum. The temperature dependence of the fluctuations yields VTF-like relaxation rates and approximate time-temperature superposition, consistent with the WLF procedure for analyzing the dynamics of complex fluids; while the size dependence of the fluctuations provides an explanation for the distribution of relaxation times and heterogeneity that are found in glass-forming liquids, thus providing a unified picture for several features in the dynamics of disordered materials.
We use a simple model to extend network models for activated dynamics to a continuous landscape with a well-defined notion of distance and a direct connection to many-body systems. The model consists of a tracer in a high-dimensional funnel landscape
The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerizati
Fossil amber offers the unique opportunity of investigating an amorphous material which has been exploring its energy landscape for more than 110 Myears of natural aging. By applying different x-ray scattering methods to amber before and after anneal
Along with experiments, numerical simulations are key to gaining insight into the underlying mechanisms governing domain wall motion in thin ferromagnetic systems. However, a direct comparison between numerical simulation of model systems and experim
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be e