ﻻ يوجد ملخص باللغة العربية
We discuss the spectral, transport and magnetic properties of quantum nanowires composed of Nleq 13 atoms and containing either even or odd numbers of valence electrons. In our approach we combine Exact Diagonalization and Ab Initio calculations (EDABI method). The analysis is performed as a function of the interatomic distance. The momentum distribution differs drastically for those obtained for even N with those for odd N, whereas the Drude weight evolves smoothly. A role of boundary conditions is stressed.
We introduce a computational scheme for calculating the electronic structure of random alloys that includes electronic correlations within the framework of the combined density functional and dynamical mean-field theory. By making use of the particul
Using density functional plus dynamical mean-field theory method (DFT+DMFT) with full self-consistency over the charge density, we study the effect of electronic correlations on the electronic structure, magnetic properties, orbital-dependent band re
Simultaneous occurrence of the Mott and band gap in correlated semiconductors results in a complex optical response with the nature of the absorption edge difficult to resolve both experimentally and theoretically. Here, we combine a dynamical mean-f
Since their discovery nearly a decade ago, plutonium-based superconductors have attracted considerable interest, which is now heightened by the latest discovery of superconductivity in PuCoIn5. In the framework of density functional theory (DFT) with
We study the optical properties of the layered rhodium oxide K0.49RhO2, which is isostructural to the thermoelectric material NaxCoO2. The optical conductivity shows broad interband transition peaks as well as a low-energy Drude-like upturn, reminisc