ﻻ يوجد ملخص باللغة العربية
We study the optical properties of the layered rhodium oxide K0.49RhO2, which is isostructural to the thermoelectric material NaxCoO2. The optical conductivity shows broad interband transition peaks as well as a low-energy Drude-like upturn, reminiscent of the optical spectra of NaxCoO2. We find that the peaks clearly shift to higher energies with respect to those of NaxCoO2, indicating a larger crystal-field splitting between eg and t2g bands in K0.49RhO2. The Drude weights suggest that the effective mass of K0.49RhO2 is almost two times smaller than that of NaxCoO2. These differences in electronic structures and correlation effects between NaxCoO2 and K0.49RhO2 are discussed in terms of the difference between Co 3d and Rh 4d orbitals.
Using the recently developed N-th order muffin-tin orbital-based downfolding technique in combination with the Dynamical Mean Field theory, we investigate the electronic properties of the much discussed Mott insulator TiOCl in the undimerized phase.
Since their discovery nearly a decade ago, plutonium-based superconductors have attracted considerable interest, which is now heightened by the latest discovery of superconductivity in PuCoIn5. In the framework of density functional theory (DFT) with
We present parameter-free LDA+DMFT (local density approximation + dynamical mean field theory) results for the many-body spectra of cubic SrVO3 and orthorhombic CaVO3. Both systems are found to be strongly correlated metals, but not on the verge of a
We discuss the spectral, transport and magnetic properties of quantum nanowires composed of Nleq 13 atoms and containing either even or odd numbers of valence electrons. In our approach we combine Exact Diagonalization and Ab Initio calculations (EDA
We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a fun