ترغب بنشر مسار تعليمي؟ اضغط هنا

One-electron self energies and spectral functions for the t-J model in the large-N limit

157   0   0.0 ( 0 )
 نشر من قبل Andres Greco
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a recently developed perturbative approach, which considers Hubbard operators as fundamental excitations, we have performed electronic self-energy and spectral function calculations for the $t-J$ model on the square lattice. We have found that the spectral functions along the Fermi surface are isotropic, even close to the critical doping where the $d$-density wave phase takes place. Fermi liquid behavior with scattering rate $sim omega^2$ and a finite quasiparticle weight $Z$ was obtained. $Z$ decreases with decreasing doping taking low values for low doping. Results are compared with other ones, analytical and numerical like slave-boson and Lanczos diagonalization finding agreement. We discuss our results in the light of recent $ARPES$ experiments in cuprates.



قيم البحث

اقرأ أيضاً

61 - A. Ramsak 1999
We study the electron momentum distribution function (EMDF) for the two-dimensional t-t-J model doped with one hole on finite clusters by the method of twisted boundary conditions. The results quantitatively agree with our analytical results for a si ngle hole in the antiferromagnetic background, based on the self-consistent Born approximation (SCBA). Moreover, within the SCBA an anomalous momentum dependence of EMDF is found, pointing to an emerging large Fermi surface. The analysis shows that the presence of next-nearest-neighbor (NNN) hopping terms changes EMDF only quantitatively.
90 - A. Foussats , A. Greco , 2008
One-electron self-energy in the $t$-$J$ model was computed using a recently developed large-$N$ method based on the path integral representation for Hubbard operators. One of the main features of the self-energy is its strong asymmetry with respect t o the Fermi level, showing the spectra mostly concentrated at high negative energy. This asymmetry is responsible for the existence of incoherent structures at high negative energy in the spectral functions. It is shown that dynamical non-double-occupancy excitations are relevant for the behavior of the self-energy. It is difficult to understand the asymmetry shown by the self-energy from weak coupling treatments. We compare our results with others in recent literature. Finally, the possible relevance of our results for the recent high energy features observed in photoemission experiments is discussed.
We study the t-J-$V$ model beyond mean field level at finite doping on the triangular lattice. The Coulomb repulsion $V$ between nearest neighbors brings the system to a charge ordered state for $V$ larger than a critical value $V_c$. One-particle sp ectral properties as self-energy, spectral functions and the quasiparticle weight are studied near and far from the charge ordered phase. When the system approaches the charge ordered state, charge fluctuations become soft and they strongly influence the system leading to incoherent one-particle excitations. Possible implications for cobaltates are given.
In the $t-J$ model, the electron fractionalization is unique due to the non-perturbative phase string effect. We formulated a lattice field theory taking this effect into full account. Basing on this field theory, we introduced a pair of Wilson loops which constitute a complete set of order parameters determining the phase diagram in the underdoped regime. We also established a general composition rule for electric transport expressing the electric conductivity in terms of the spinon and the holon conductivities. The general theory is applied to studies of the quantum phase diagram. We found that the antiferromagnetic and the superconducting phases are dual: in the former, holons are confined while spinons are deconfined, and {it vice versa} in the latter. These two phases are separated by a novel phase, the so-called Bose-insulating phase, where both holons and spinons are deconfined and the system is electrically insulating.
203 - N.M. Plakida 2002
A comparison of microscopic theories of superconductivity in the limit of strong electron correlations is presented. We consider results for the two-dimensional t-J model obtained within the projection technique for the Green functions in terms of th e Hubbard operators and the slave-fermion representation for the RVB state. It is argued that the latter approach resulting in the odd-symmetry p-wave pairing for fermions is inadequate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا