ﻻ يوجد ملخص باللغة العربية
We present a time-resolved measurement of magnetization dynamics during ferromagnetic resonance (FMR) in a single layer of Ni81Fe19. Small-angle (<1 deg.) precession of elemental Ni, Fe moments could be measured directly and quantitatively using time-resolved x-ray magnetic circular dichroism (XMCD) in transmission. The high temporal and rotational sensitivity of of this technique has allowed characterization of the phase and amplitude of driven FMR motion at 2.3 GHz, verifying basic expectations for a driven resonance.
Surface acoustic waves (SAW) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic/ferroelectric (nickel/lithium niobate) hybrid device. We measure the SAW magneto-tr
Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is
Several experimental techniques have been introduced in recent years in attempts to measure spin transfer torque in magnetic tunnel junctions (MTJs). The dependence of spin torque on bias is important for understanding fundamental spin physics in mag
We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or
Spin-polarized electric current exerts torque on local magnetic spins, resulting in magnetic domain-wall (DW) motion in ferromagnetic nanowires. Such current-driven DW motion opens great opportunities toward next-generation magnetic devices controlle