ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved ferromagnetic resonance in epitaxial Fe1-xCox films

67   0   0.0 ( 0 )
 نشر من قبل Paul Crowell
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is rotated with respect to the static and pulsed field directions, providing a complete mapping of the free energy surface and characteristic relaxation times. The magnetic response can be simulated with a simple coherent rotation model except in the immediate vicinity of switching fields. Bulk and surface anisotropies are identified, and unusual dynamics associated with the coexistence of cubic and uniaxial anisotropies are observed.



قيم البحث

اقرأ أيضاً

The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum at theta=90 degree, which arises from intrinsic pinning. All data except at theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from 1.5 to 2 with increasing temperature, which is an evidence for multi-band superconductivity.
109 - N. A. Pertsev , H. Kohlstedt , 2011
The phenomenon of ferromagnetic resonance (FMR) provides fundamental information on the physics of magnetic materials and lies at the heart of a variety of signal processing microwave devices. Here we demonstrate theoretically that substrate-induced lattice strains may change the FMR frequency of an epitaxial ferromagnetic film dramatically, leading to ultralow and ultrahigh resonance frequencies at room temperature. Remarkably, the FMR frequency varies with the epitaxial strain nonmonotonically, reaching minimum at a critical strain corresponding to the strain-induced spin reorientation transition. Furthermore, by coupling the ferromagnetic film to a ferroelectric substrate, it becomes possible to achieve an efficient voltage control of FMR parameters. In contrast to previous studies, we found that the tunability of FMR frequency varies with the applied electric field and strongly increases at critical field intensity. The revealed features open up wide opportunities for the development of advanced tunable magnetoelectric devices based on strained nanomagnets.
168 - J. Cui , P. Wiecki , S. Ran 2016
Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe$_2$As$_2$ families of iron-pnictide superconductor s by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron pnictide superconducting family, Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. We re-analyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe$_2$As$_2$ system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides.
We report on the formation of the dilute $Pd_{1-x}Fe_x$ compositions with tunable magnetic properties under an ion-beam implantation of epitaxial Pd thin films. Binary $Pd_{1-x}Fe_x$ alloys with a mean iron content $x$ of $0.025$, $0.035$ or $0.075$ were obtained by the implantation of $40 keV$ $Fe^+$ ions into the palladium films on MgO (001) substrate to the doses of $0.5cdot10^{16}, 1.0cdot10^{16}$ and $3.0cdot10^{16}$ $ions/cm^2$, respectively. Structural and magnetic studies have shown that iron atoms occupy regular fcc-lattice Pd-sites without the formation of any secondary crystallographic phase. All the iron implanted Pd films reveal ferromagnetism at low temperatures (below $200 K$) with both the Curie temperature and saturation magnetization determined by the implanted iron dose. In contrast to the magnetic properties of the molecular beam epitaxy grown $Pd_{1-x}Fe_x$ alloy films with the similar iron contents, the Fe-implanted Pd films possess weaker in-plane magnetocrystalline anisotropy, and, accordingly, a lower coercivity. The observed multiple ferromagnetic resonances in the implanted $Pd_{1-x}Fe_x$ films indicate a formation of a magnetically inhomogeneous state due to spinodal decomposition into regions, presumably layers, with identical crystal symmetry but different iron contents. The multiphase magnetic structure is robust with respect to the vacuum annealing at $770 K$, though develops towards well-defined local $Pd-Fe$ compositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا