ﻻ يوجد ملخص باللغة العربية
Nb2SnC is a member of the large family of lamellar materials that crystallize in the hexagonal structure with space group P63/mmc which are isomorphs with Cr2AlC, also named H-phase. In spite of the great number of compounds which belong to this family, the superconductivity has been reported only for two cases: Mo2GaC and Nb2SC. In this work we show that superconductivity can be observed in Nb2SnC depending on the synthesis method used. The quality of the superconductor is strongly dependent of the synthesis method and the optimal results were reached for samples synthesized at 2.5 GPa and 523 +/- 50oC. This sample showed a critical temperature close to 7.8K, revealed from magnetization and transport measurement, the highest critical temperature reported up to now for an H-phase.
We report on the synthesis and on basic superconducting properties of a completely new Mo_2Re_3B ternary boride. The crystal structure of the Mo_2Re_3B compound is characterised by Pmmm space group and the cell parameters: a=11.626 A, b=8.465 A and c
Organometallic compounds constitute a very large group of substances that contain at least one metal-to-carbon bond in which the carbon is part of an organic group. They have played a major role in the development of the science of chemistry. These c
The niobium rich selenide compound Nb5Se4 was synthesized at ambient pressure by high-temperature solid-state reaction in a sealed Ta tube. Resistivity and heat capacity measurements reveal that this compound is superconducting, with a T_c = 1.85K. T
The discovery of superconductivity (SC) with a transition temperature, Tc, up to 65K in single-layer FeSe (bulk Tc =8K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combi
Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc