ﻻ يوجد ملخص باللغة العربية
We derive the exact solution of the Boltzmann kinetic equation for the three-dimensional Lorentz model in the presence of a constant and uniform magnetic field. The velocity distribution of the electrons reduces exponentially fast to its spherically symmetric component. In the long time hydrodynamic limit there remains only the diffusion process governed by an anisotropic diffusion tensor. The systematic way of building the Chapman-Enskog solutions is described.
This work examines the idea of applying the Chapman-Enskog (CE) method for approximating the solution of the Boltzmann equation beyond the realm of physics, using an information theory approach. Equations describing the evolution of averages and thei
We investigate, by means of extensive Monte Carlo simulations, the magnetic critical behavior of the three-dimensional bimodal random-field Ising model at the strong disorder regime. We present results in favor of the two-exponent scaling scenario, $
We find an exact general solution to the three-dimensional (3D) Ising model via an exact self-consistency equation for nearest-neighbors correlations. It is derived by means of an exact solution to the recurrence equations for partial contractions of
We show that for a d-dimensional model in which a quench with a rate tau^{-1} takes the system across a d-m dimensional critical surface, the defect density scales as n sim 1/tau^{m u/(z u +1)}, where u and z are the correlation length and dynamical
We discuss the exact solution for the properties of the recently introduced ``necklace model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to