ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical spectra of rare-earth nickelates

90   0   0.0 ( 0 )
 نشر من قبل Alain Mercy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the electronic band structure obtained from first principles DFT calculations, the opticalspectra of yttrium and neodymium nickelates are computed. We show that the results are in fairagreement with available experimental data. We clarify the electronic transitions at the origin of thefirst two peaks, highlighting the important role of transitions from t2g states neglected in previousmodels. We discuss the evolution of the optical spectra from small to large rare-earth cations andrelate the changes to the electronic band structure.


قيم البحث

اقرأ أيضاً

The rare-earth nickelates are a rich playground for transport properties, known to host non-Fermi liquid character, resistance saturation and metal-insulator transitions. We report a study of transport in LaNiO3 in the presence of tunable disorder in duced by irradiation. While pristine LaNiO3 samples are metallic, highly irradiated samples show insulating behaviour at all temperatures. Using irradiation fluence as a tuning handle, we uncover an intermediate region hosting a metal-insulator transition. This transition falls within the Mott-Ioffe-Regel regime wherein the mean free path is comparable to lattice spacing. In the high temperature metallic regime, we find a transition from non-Fermi liquid to a Fermi-liquid-like character. On the insulating side of the metal-insulator transition, we find behaviour that is consistent with weak localization. This is reflected in magnetoresistance that scales with the square of the field and in resistivity. In the highly irradiated insulating samples, we find good agreement with variable range hopping, consistent with Anderson localization. We find qualitatively similar behaviour in thick PrNiO3 films as well. Our results demonstrate that ion irradiation can be used to tailor transport, serving as an excellent tool to study the physics of localization.
We present a systematic density functional theory (DFT) plus Hubbard $U$ study of structural trends and the stability of different magnetically ordered states across the rare-earth nickelate series, $R$NiO$_3$, with $R$ from Lu to La. In particular, we investigate how the magnetic order, the change of the rare-earth ion, and the Hubbard interaction $U$ are affecting the bond-length disproportionation between the nickel sites. Our results show that structural parameters can be obtained that are in very good agreement with present experimental data, and that DFT+$U$ is in principle able to capture the most important structural trends across the nickelate series. However, the amplitude of the bond-length disproportionation depends very strongly on the specific value used for the Hubbard $U$ parameter and also on the type of magnetic order imposed in the calculation. Regarding the relative stability of different magnetic orderings, a realistic antiferromagnetic order, consistent with the experimental observations, is favored for small $U$ values, and becomes more and more favorable compared to the ferromagnetic state towards the end of the series (i.e., towards $R$=Pr). Nevertheless, it seems that the stability of the ferromagnetic state is generally overestimated within the DFT+$U$ calculations. Our work provides a profound starting point for more detailed experimental investigations, and also for future studies using more advanced computational techniques such as, e.g., DFT combined with dynamical mean-field theory.
Whilst electron correlations were previously recognized to trigger beyond conventional direct current (DC) electronic transportations (e.g. metal-to-insulator transitions, bad metal, thermistors), their respective influences to the alternation curren t (AC) transport are largely overlooked. Herein, we demonstrate active regulations in the electronic functionalities of d-band correlated rare-earth nickelate (ReNiO3) thin films, by simply utilizing their electronic responses to AC-frequencies (fAC). Assisted by temperature dependent near edge X-ray absorption fine structure analysis, we discovered positive temperature dependences in Coulomb viscosity of ReNiO3 that moderates their AC impedance. Distinguished crosslinking among R(Real)-fAC measured in nearby temperatures is observed that differs to conventional oxides. It enables active adjustability in correlated transports of ReNiO3, among NTCR-, TDelta- and PTCR- thermistors, via fAC from the electronic perspective without varying materials or device structures. The TDelta-fAC relationship can be further widely adjusted via Re composition and interfacial strains. The AC-frequency sensitivity discovered in ReNiO3 brings in a new freedom to regulating and switching the device working states beyond the present semiconductor technologies. It opens a new paradigm for enriching novel electronic applications catering automatic transmission or artificial intelligence in sensing temperatures and frequencies.
The properties of AMO3 perovskite oxides, where M is a 3d transition metal, depend strongly on the level of covalency between the metal d and oxygen p orbitals. With their complex spin orders and metal-insulator transition, rare-earth nickelates verg e between dominantly ionic and covalent characters. Accordingly, the nature of their ground state is highly debated. Here, we reconcile the ionic and covalent visions of the insulating state of nickelates. Through first-principles calculations, we show that it is reminiscent of the ionic charge disproportionation picture (with strictly low-spin 4+ and high-spin 2+ Ni sites) while exhibiting strong covalence effects with oxygen electrons shifted toward the depleted Ni cations, mimicking a configuration with identical Ni sites. Our results further hint at strategies to control electronic and magnetic phases of transition metal oxide perovskites.
We study the temperature dependence of the optical conductivity of rare-earth nickelate films of varying composition and strain close to the antiferromagnetic ordering temperature, TN. Two prominent peaks at 0.6 and 1.3 eV, which are characteristic o f the insulating phase, display a small but significant increase in intensity when the material passes from para- to antiferromagnetic. This observation indicates the presence of a positive feedback between antiferromagnetic (AF) and bond disproportionation (BD) order. By analyzing the temperature dependence near TN, and using a Landau-type free-energy expression for BD and AF order, we infer that BD order is a necessary condition for the AF phase to appear, and that the antiferromagnetism contributes to stabilization of the bond disproportionation. This model also explains why hysteresis is particularly strong when the transition into the insulating state occurs simultaneously with antiferromagnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا