ﻻ يوجد ملخص باللغة العربية
We present a resonant x-ray scattering study of the octahedral tilt order between 50K and 310K in La_7/8Sr_1/8MnO_3. At the La L_II-edge the resonant (300) reflection probes cooperative tilts of the MnO_6-octahedra in this material, as verified by a model caclulation as well as a LDA+U study. The investigation of the octahedral tilts as a function of temperature and the comparison to the lattice parameters, the magnetization and the superlattice reflections related to charge and/or orbital order reveal an intimate coupling between electronic and tilt degrees of freedom in La_7/8Sr_1/8MnO_3.
The intermetallic FeSi exhibits an unusual temperature dependence in its electronic and magnetic degrees of freedom, epitomized by the crossover from a low temperature non-magnetic semiconductor to a high temperature paramagnetic metal with a Curie-W
Distortions of the oxygen octahedra influence the fundamental electronic structure of perovskite oxides, such as their bandwidth and exchange interactions. Utilizing a fully ab-initio methodology based on density functional theory plus dynamical mean
The rotation of octahedra (octahedral tilting) is common in ABO3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is a
We investigate the electronic structure of a perovskite-type Pauli paramagnet SrMoO3 (t2g2) thin film using hard x-ray photoemission spectroscopy and compare the results to the realistic calculations that combine the density functional theory within
We have obtained the equilibrium volumes, bulk moduli, equations of state of the ferromagnetic cubic $alpha$ and paramagnetic hexagonal $epsilon$ phases of iron in close agreement with experiment using an ab initio dynamical mean-field theory approac