ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of the spectral weight in p- and n-type cuprates: a study of normal state partial gaps and electronic kinetic energy

132   0   0.0 ( 0 )
 نشر من قبل Nicole Bontemps
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical conductivity of CuO2 (copper-oxygen) planes in p- and n-type cuprates thin films at various doping levels is deduced from highly accurate reflectivity data. The temperature dependence of the real part sigma1(omega) of this optical conductivity and the corresponding spectral weight allow to track the opening of a partial gap in the normal state of n-type Pr{2-x}Ce(x)CuO4 (PCCO), but not of p-type Bi2Sr2CaCu2O(8+delta} (BSCCO) cuprates. This is a clear difference between these two families of cuprates, which we briefly discuss. In BSCCO, the change of the electronic kinetic energy Ekin - deduced from the spectral weight- at the superconducting transition is found to cross over from a conventional BCS behavior (increase of Ekin below Tc to an unconventional behavior (decrease of Ekin below Tc) as the free carrier density decreases. This behavior appears to be linked to the energy scale over which spectral weight is lost and goes into the superfluid condensate, hence may be related to Mott physics.

قيم البحث

اقرأ أيضاً

101 - Nicole Bontemps 2006
The real part of the optical in-plane conductivity of p-- and n--type cuprates thin films at various doping levels was deduced from highly accurate reflectivity measurements. We present here a comprehensive set of optical spectral weight data as a fu nction of the temperature $T (> T_c$), for underdoped and overdoped samples. The temperature dependence of the spectral weight is not universal. Using various cut-off frequencies for the spectral weight, we show that n--type Pr$_{2-x}$Ce$_x$CuO$_4$ and p--type Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ exhibit both similarities and striking differences. The Fermi surface is closed in overdoped metallic samples. In underdoped Pr$_{2-x}$Ce$_x$CuO$_4$ samples, it clearly breaks into arcs, giving rise to a pseudogap signature. It is argued that such a signature is subtle in underdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$.
We performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer Bi-cuprate family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between th e conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper-pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi$_2$Sr$_2$CaCu$_2$O$_{8-x}$ single crystals: under-doped with $T_c=60, 70$ and 83K, optimally doped with $T_c=91$K, overdoped with $T_c=84, 81, 70$ and $58$K, as well as optimally doped Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+x}$ with $T_c=110$K. Our first observation is that, as the temperature drops through $T_c$, the loss function in the range up to 2~eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at - or close to - $T_c$ depends strongly on doping, with a sign-change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its $q$-dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Due to the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated to the region of $q$ around $(pi,pi)$.
264 - F. Venturini , M. Opel , R. Hackl 2001
We report electronic Raman scattering measurements on Bi$_2$Sr$_2$(Y$_{1-x}$Ca$_x$)Cu$_2$O$_{8+delta}$ single crystals at different doping levels. The dependence of the spectra on doping and on incoming photon energy is analyzed for different polariz ation geometries, in the superconducting and in the normal state. We find the scaling behavior of the superconductivity pair-breaking peak with the carrier concentration to be very different in B$_{1g}$ and B$_{2g}$ geometries. Also, we do not find evidence of any significant variation of the lineshape of the spectra in the overdoped region in both symmetries, while we observe a reduction of the intensity in B$_{2g}$ upon decreasing photon energies. The normal state data are analyzed in terms of the memory-function approach. The quasiparticle relaxation rates in the two symmetries display a dependence on energy and temperature which varies with the doping level.
232 - E. C. Marino 2021
After providing a brief genealogy of our recently proposed model for High-Tc cuprates, we investigate the details of the microscopic mechanism that produces an attractive interaction between neighboring holes. We show that a peculiar arrangement of t he $p_x$ and $p_y$ oxygen orbitals makes the mutual magnetic interaction of the holes with the localized copper ions to produce a net attractive interaction between themselves, which is responsible for the emergence of a superconducting phase. We also study the connection existing between the proposed pseudogap order parameter and the spectral density. We show that the occurrence of two sharp peaks in the latter, between which the density of states suffers a depletion is a direct consequence of the d-wave character of the pseudogap order parameter dependence on $mathbf{k}$, which breaks the 90$^circ$-rotation symmetry of the oxygen lattices. The peak separation in the spectral density works effectively as an overall pseudogap order parameter for the cuprates. We explicitly calculate the spectral density in the strange metal and pseudogap phases of Bi2212, at different temperatures, and show that our results compare very well with the experimental data.
We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c } decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of intrinsic disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا