ﻻ يوجد ملخص باللغة العربية
After providing a brief genealogy of our recently proposed model for High-Tc cuprates, we investigate the details of the microscopic mechanism that produces an attractive interaction between neighboring holes. We show that a peculiar arrangement of the $p_x$ and $p_y$ oxygen orbitals makes the mutual magnetic interaction of the holes with the localized copper ions to produce a net attractive interaction between themselves, which is responsible for the emergence of a superconducting phase. We also study the connection existing between the proposed pseudogap order parameter and the spectral density. We show that the occurrence of two sharp peaks in the latter, between which the density of states suffers a depletion is a direct consequence of the d-wave character of the pseudogap order parameter dependence on $mathbf{k}$, which breaks the 90$^circ$-rotation symmetry of the oxygen lattices. The peak separation in the spectral density works effectively as an overall pseudogap order parameter for the cuprates. We explicitly calculate the spectral density in the strange metal and pseudogap phases of Bi2212, at different temperatures, and show that our results compare very well with the experimental data.
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th
Our recent study has revealed that the mixture of the dz2 orbital component into the Fermi surface suppresses Tc in the cuprates such as La2CuO4. We have also shown that applying hydrostatic pressure enhances Tc due to smaller mixing of the Cu4s comp
Cuprate high-T_c superconductors on the Mott-insulating side of optimal doping (with respect to the highest T_cs) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike t
We derive analytic expressions for the critical temperatures of the superconducting (SC) and pseudogap (PG) transitions of the high-Tc cuprates as a function of doping. These are in excellent agreement with the experimental data both for single-layer
To address the issues of superconducting and charge properties in high-T$_c$ cuprates, we perform a quantum Monte Carlo study of an extended three-band Emery model, which explicitly includes attractive interaction $V_{OO}$ between oxygen orbitals. In