ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence on the development of scale invariance in the internal structure of self-affine aggregates

35   0   0.0 ( 0 )
 نشر من قبل Claudio Horowitz
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that an alternative approach for the characterization of growing branched patterns consists of the statistical analysis of frozen structures, which cannot be modified by further growth, that arise due to competitive processes among neighbor growing structures. Scaling relationships applied to these structures provide a method to evaluate relevant exponents and to characterize growing systems into universality classes. The analysis is applied to quasi-two-dimensional electrochemically formed silver branched patterns showing that the size distribution of frozen structures exhibits scale invariance. The measured exponents, within the error bars, remind us those predicted by the Kardar-Parisi-Zhang equation.



قيم البحث

اقرأ أيضاً

Dynamics of dissipation of a local phonon distribution to the substrate is a key issue in friction between sliding surfaces as well as in boundary lubrication. We consider a model system consisting of an excited nano-particle which is weakly coupled with a substrate. Using three different methods we solve the dynamics of energy dissipation for different types of coupling between the nano-particle and the substrate, where different types of dimensionality and phonon densities of states were also considered for the substrate. In this paper, we present our analysis of transient properties of energy dissipation via phonon discharge in the microscopic level towards the substrate. Our theoretical analysis can be extended to treat realistic lubricant molecules or asperities, and also substrates with more complex densities of states. We found that the decay rate of the nano-particle phonons increases as the square of the interaction constant in the harmonic approximation.
The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-ord er average Hamiltonian terms, for 13-C NMR in C60. The 29-Si NMR linewidth of Silicon has been reduced by a factor of about 70,000 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.
68 - P.L. Krapivsky , I. Grosse , 1999
We derive exact statistical properties of a class of recursive fragmentation processes. We show that introducing a fragmentation probability 0<p<1 leads to a purely algebraic size distribution in one dimension, P(x) ~ x^{-2p}. In d dimensions, the vo lume distribution diverges algebraically in the small fragment limit, P(V)sim V^{-gamma} with gamma=2p^{1/d}. Hence, the entire range of exponents allowed by mass conservation is realized. We demonstrate that this fragmentation process is non-self-averaging. Specifically, the moments Y_alpha=sum_i x_i^{alpha} exhibit significant fluctuations even in the thermodynamic limit.
A random neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is exactly calculable. The system is critical only at a special point Jc in the coupling parameter space. However, the critical region around this point, where approximate scale invariance holds, is very large, suggesting a mechanism for explaining the ubiquity of scale invariance in Nature.
We present experimental evidence of statistical conformal invariance in isocontours of fluid thickness in experiments of two-dimensional turbulence using soap films. A Schlieren technique is used to visualize regions of the flow with constant film th ickness, and association of isocontours with Schramm-Lowner evolution (SLE) is used to identify conformal invariance. In experiments where an inverse energy cascade develops, statistical evidence is consistent with such an association. The diffusivity of the associated one-dimensional Brownian process is close to 8/3, a value previously identified in isocontours of vorticity in high-resolution numerical simulations of two-dimensional turbulence (D. Bernard et al., Nature Phys. 2, 124, 2006). In experiments where the inverse energy cascade is not sufficiently developed, no statistical evidence of conformal invariance is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا