ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges

84   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Niimi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the electronic local density of states (LDOS) of graphite surfaces near monoatomic step edges, which consist of either the zigzag or armchair edge, with the scanning tunneling microscopy (STM) and spectroscopy (STS) techniques. The STM data reveal that the $(sqrt{3} times sqrt{3}) R 30^{circ}$ and honeycomb superstructures coexist over a length scale of 3-4 nm from both the edges. By comparing with density-functional derived nonorthogonal tight-binding calculations, we show that the coexistence is due to a slight admixing of the two types of edges at the graphite surfaces. In the STS measurements, a clear peak in the LDOS at negative bias voltages from -100 to -20 mV was observed near the zigzag edges, while such a peak was not observed near the armchair edges. We concluded that this peak corresponds to the graphite edge state theoretically predicted by Fujita textit{et al.} [J. Phys. Soc. Jpn. {bf 65}, 1920 (1996)] with a tight-binding model for graphene ribbons. The existence of the edge state only at the zigzag type edge was also confirmed by our first-principles calculations with different edge terminations.

قيم البحث

اقرأ أيضاً

56 - Y. Niimi , T. Matsui , H. Kambara 2004
We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the $(sqrt{3} times sqrt{3}) R 30^{circ }$ and honeycomb superstructures extending over 3$-$4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the edge state theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.
Exotic quantum phenomena have been demonstrated in recently discovered intrinsic magnetic topological insulator MnBi2Te4. At its two-dimensional limit, quantum anomalous Hall (QAH) effect and axion insulator state are observed in odd and even layers of MnBi2Te4, respectively. The measured band structures exhibit intriguing and complex properties. Here we employ low-temperature scanning tunneling microscopy to study its surface states and magnetic response. The quasiparticle interference patterns indicate that the electronic structures on the topmost layer of MnBi2Te4 is different from that of the expected out-of-plane A-type antiferromagnetic phase. The topological surface states may be embedded in deeper layers beneath the topmost surface. Such novel electronic structure presumably related to the modification of crystalline structure during sample cleaving and re-orientation of magnetic moment of Mn atoms near the surface. Mn dopants substituted at the Bi site on the second atomic layer are observed. The ratio of Mn/Bi substitutions is 5%. The electronic structures are fluctuating at atomic scale on the surface, which can affect the magnetism of MnBi2Te4. Our findings shed new lights on the magnetic property of MnBi2Te4 and thus the design of magnetic topological insulators.
We study the relationship between the local density of states (LDOS) and the conductance variation $Delta G$ in scanning-gate-microscopy experiments on mesoscopic structures as a charged tip scans above the sample surface. We present an analytical mo del showing that in the linear-response regime the conductance shift $Delta G$ is proportional to the Hilbert transform of the LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and $Delta G$. We analyze the physical conditions for the validity of this relationship both for one-dimensional and two-dimensional systems when several channels contribute to the transport. We focus on realistic Aharonov-Bohm rings including a random distribution of impurities and analyze the LDOS-$Delta G$ correspondence by means of exact numerical simulations, when localized states or semi-classical orbits characterize the wavefunction of the system.
Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperatu re superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.
In scanning tunneling experiments on semiconductor surfaces, the energy scale within the tunneling junction is usually unknown due to tip-induced band bending. Here, we experimentally recover the zero point of the energy scale by combining scanning t unneling microscopy with Kelvin probe force spectroscopy. With this technique, we revisit shallow acceptors buried in GaAs. Enhanced acceptor-related conductance is observed in negative, zero, and positive band-bending regimes. An Anderson-Hubbard model is used to rationalize our findings, capturing the crossover between the acceptor state being part of an impurity band for zero band bending, and the acceptor state being split off and localized for strong negative or positive band bending, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا