ﻻ يوجد ملخص باللغة العربية
Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.
One of the main challenges in understanding high TC superconductivity is to disentangle the rich variety of states of matter that may coexist, cooperate, or compete with d-wave superconductivity. At center stage is the pseudogap phase, which occupies
SmB$_6$, a so called Kondo insulator, is recently discussed as a candidate material for a strong topological insulator. We present detailed atomically resolved topographic information on the (001) surface from more than a dozen SmB$_6$ samples. Atomi
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a conden
Electronic nematicity is an important order in most iron-based superconductors, and FeSe represents a unique example, in which nematicity disentangles from spin ordering. It is commonly perceived that this property arises from strong electronic corre
Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the underdoped regime. Intra-unit cell charge ordering tendencies point to electronic nematic order involving oxygen orbitals. In this context we inves