ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of electronic nematicity using scanning tunneling microscopy

100   0   0.0 ( 0 )
 نشر من قبل Eduardo H. da Silva Neto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.

قيم البحث

اقرأ أيضاً

One of the main challenges in understanding high TC superconductivity is to disentangle the rich variety of states of matter that may coexist, cooperate, or compete with d-wave superconductivity. At center stage is the pseudogap phase, which occupies a large portion of the cuprate phase diagram surrounding the superconducting dome [1]. Using scanning tunneling microscopy, we find that a static, non-dispersive, checkerboard-like electronic modulation exists in a broad regime of the cuprate phase diagram and exhibits strong doping dependence. The continuous increase of checkerboard periodicity with hole density strongly suggests that the checkerboard originates from charge density wave formation in the anti-nodal region of the cuprate Fermi surface. These results reveal a coherent picture for static electronic orderings in the cuprates and shed important new light on the nature of the pseudogap phase.
SmB$_6$, a so called Kondo insulator, is recently discussed as a candidate material for a strong topological insulator. We present detailed atomically resolved topographic information on the (001) surface from more than a dozen SmB$_6$ samples. Atomi cally flat, {it in situ} cleaved surfaces often exhibit B- and Sm-terminated surfaces as well as reconstructed and non-reconstructed areas {it coexisting} on different length scales. The terminations are unambiguously identified. In addition, electronic inhomogeneities are observed which likely result from the polar nature of the (001) surface and may indicate an inhomogeneous Sm valence at the surface of SmB$_6$. In addition, atomically resolved topographies on a (110) surface are discussed.
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a conden sed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference and emerging Landau levels at high magnetic field in Dirac semimetals Cd$_3$As$_2$ and Na$_3$Bi, we observed extended Dirac-like bulk electronic bands. Quasiparticle interference imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.
Electronic nematicity is an important order in most iron-based superconductors, and FeSe represents a unique example, in which nematicity disentangles from spin ordering. It is commonly perceived that this property arises from strong electronic corre lation, which can not be properly captured by density functional theory (DFT). Here, we show that by properly considering the paramagnetic condition and carefully searching the energy landscape with symmetry-preconditioned wavefunctions, two nematic solutions stand out at either the DFT+$U$ or hybrid functional level, both of which are lower in energy than the symmetric solution. The ground-state band structure and Fermi surface can be well compared with the recent experimental results. Symmetry analysis assigns these two new solutions to the $B_{1g}$ and $E_u$ irreducible representations of the D$_{4h}$ point group. While the $B_{1g}$ Ising nematicity has been widely discussed in the context of vestigial stripe antiferromagnetic order, the two-component $E_u$ vector nematicity is beyond previous theoretical discussion. Distinct from the $B_{1g}$ order, the $E_u$ order features mixing of the Fe $d$-orbitals and inversion symmetry breaking, which lead to striking experimental consequences, e.g. missing of an electron pocket.
95 - S. Bulut , W. A. Atkinson , 2013
Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the underdoped regime. Intra-unit cell charge ordering tendencies point to electronic nematic order involving oxygen orbitals. In this context we inves tigate charge instabilities in the Emery model and calculate the charge susceptibility within diagrammatic perturbation theory. In this approach, the onset of charge order is signalled by a divergence of the susceptibility. Our calculations reveal three different kinds of order: a commensurate ($q=0$) nematic order, and two incommensurate nematic phases with modulation wavevectors that are either axial or oriented along the Brillouin zone diagonal. We examine the nematic phase diagram as a function of the filling, the interaction parameters, and the band structure. We also present results for the excitation spectrum near the nematic instability, and show that a soft nematic mode emerges from the particle-hole continuum at the transition. The Fermi surface reconstructions that accompany the modulated nematic phases are discussed with respect to their relevance for magneto-oscillation and photoemission measurements. The modulated nematic phases that emerge from the three-band Emery model are compared to those found previously in one-band models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا