ﻻ يوجد ملخص باللغة العربية
Nd_0.5 Ca_0.5 MnO_3 (NCMO) nanoparticles (average diameter ~ 20 and 40 nm) are synthesized by polymeric precursor sol-gel method and characterized by X- ray diffraction, transmission electron microscopy (TEM), selective area electron diffraction (SAED), superconducting quantum interference device (SQUID) magnetometery and resistivity measurements. Both single crystalline and polycrystalline particles are present in the samples and they are found to retain the orthorhombic structure of the bulk NCMO. However, most strikingly, in the 20 nm particles, the charge ordered (CO) and the antiferromagnetic phases observed in the bulk at 250 K and 160 K respectively are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator to metal transition at 75 K. In the 40 nm particles, though a weak, residual CO phase is observed, transition to FM state also occurs, but at a slightly higher temperature of 110 K. The magnetization is found to increase with the decrease of particle size.
CaCo2As2 is a unique itinerant system having strong magnetic frustration. Here we report the effect of electron doping on the physical properties resulting from Ni substitutions for Co. The A-type antiferromagnetic transition temperature TN = 52 K fo
Nanowires of Pr_0.57 Ca_0.41 Ba_0.02 MnO_3 (PCBM) (diameter ~ 80-90 nm and length ~ 3.5 mm) were synthesized by a low reaction temperature hydrothermal method. Single-phase nature of the sample was confirmed by XRD experiments. Scanning electron micr
Nanoparticles (dia ~ 5 - 7 nm) of Bi_0.5 X_0.5(X=Ca,Sr)MnO_3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well
A lightly doped perovskite mangantite La_{0.88}Sr_{0.12}MnO_3 exhibits a phase transition at T_{OO}=145 K from a ferromagnetic metal (T_C=172 K) to a novel ferromagnetic insulator.We identify that the key parameter in the transition is the orbital de
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure