ترغب بنشر مسار تعليمي؟ اضغط هنا

Reorganization of a 2D disordered granular medium due to a small local cyclic perturbation

91   0   0.0 ( 0 )
 نشر من قبل Chay Goldenberg
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure experimentally the rearrangements due to a small localized cyclic displacement applied to a packing of rigid grains under gravity in a 2D geometry. We analyze the evolution of the response to this perturbation by considering the individual particle displacement and the coarse grained displacement field, as well as the mean packing fraction and coordination number. We find that the displacement response is rather long ranged, and evolves considerably with the number of cycles. We show that a small difference in the preparation method (induced by tapping the container) leads to a significant modification in the response though the packing fraction changes are minute. Not only the initial response but also its further evolution change with preparation, demonstrating that the system still retains a memory of the initial preparation after many cycles. Nevertheless, after a sufficient number of cycles, the displacement response for both preparation methods converges to a nearly radial field with a 1/r decay from the perturbation source. The observed differences between the preparation methods seem to be related to the changes in the coordination number (which is more sensitive to the evolution of the packing than the packing fraction). Specifically, it may be understood as an effect of the breaking of local arches, which affects the lateral transmission of forces.

قيم البحث

اقرأ أيضاً

Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.
We experimentally investigate the response of a sheared granular medium in a Couette geometry. The apparatus exhibits the expected stick-slip motion and we probe it in the very intermittent regime resulting from low driving. Statistical analysis of t he dynamic fluctuations reveals notable regularities. We observe a possible stability property for the torque distribution, reminiscent of the stability of Gaussian independent variables. In this case, however, the variables are correlated and the distribution is skewed. Moreover, the whole dynamical intermittent regime can be described with a simple stochastic model, finding good quantitative agreement with the experimental data. Interestingly, a similar model has been previously introduced in the study of magnetic domain wall motion, a source of Barkhausen noise. Our study suggests interesting connections between different complex phenomena and reveals some unexpected features that remain to be explained.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the po lymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
103 - D. Bolle , R. Heylen 2007
We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs, obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions. Using transfer-matrix techniques, we deri ve fixed-point equations describing the relevant order parameters and the free energy, both in the replica symmetric and one step replica symmetry breaking approximation. We determine the static and dynamic ferromagnetic transition and the spinglass transition within replica symmetry for all temperatures, and demonstrate corrections to these results when one step replica symmetry breaking is taken into account. The results obtained are in agreement with Monte-Carlo simulations.
The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which s uggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا