ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-world hypergraphs on a bond-disordered Bethe lattice

225   0   0.0 ( 0 )
 نشر من قبل Rob Heylen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the thermodynamic properties of spin systems with bond-disorder on small-world hypergraphs, obtained by superimposing a one-dimensional Ising chain onto a random Bethe graph with p-spin interactions. Using transfer-matrix techniques, we derive fixed-point equations describing the relevant order parameters and the free energy, both in the replica symmetric and one step replica symmetry breaking approximation. We determine the static and dynamic ferromagnetic transition and the spinglass transition within replica symmetry for all temperatures, and demonstrate corrections to these results when one step replica symmetry breaking is taken into account. The results obtained are in agreement with Monte-Carlo simulations.



قيم البحث

اقرأ أيضاً

We study bond percolation on a one-parameter family of hierarchical small-world network, and find a meta-transition between the inverted BKT transition and the abrupt transition driven by changing the network topology. It is found that the order para meter is continuous and fractal exponent is discontinuous in the inverted BKT transition, and oppositely, the former is discontinuous and the latter is continuous in the abrupt transition. The gaps of the order parameter and fractal exponent in each transition go to vanish as approaching the meta-transition point. This point corresponds to a marginal power-law transition. In the renormalization group formalism, this meta-transition corresponds to the transition between transcritical and saddle-node bifurcations of the fixed point via a pitchfork bifurcation.
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point re sistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $alpha$.
151 - F.P. Fernandes , F.W.S. Lima , 2010
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi nt exponents are obtained. For the undi- rected case this random system belongs to the same universality class as the regular two-dimensional model. However, for the directed random lattice one has a second-order phase transition for q < qc and a first-order phase transition for q > qc, where qc is the critical rewiring probability. The critical exponents for q < qc was calculated and they do not belong to the same universality class as the regular two-dimensional ferromagnetic model.
Monte Carlo simulations are performed to study the two-dimensional Potts models with q=3 and 4 states on directed Small-World network. The disordered system is simulated applying the Heat bath Monte Carlo update algorithm. A first-order and second-or der phase transition is found for q=3 depending on the rewiring probability $p$, but for q=4 the system presents only a first-order phase transition for any value $p$ . This critical behavior is different from the Potts model on a square lattice, where the second-order phase transition is present for $qle4$ and a first-order phase transition is present for q>4.
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice $Lambda$ by $ell$ bonds connecting the same adjacent vertices, thereby yieldin g the lattice $Lambda_ell$. This relation is used to calculate the bond percolation threshold on $Lambda_ell$. We show that this bond inflation leaves the universality class of the percolation transition invariant on a lattice of dimensionality $d ge 2$ but changes it on a one-dimensional lattice and quasi-one-dimensional infinite-length strips. We also present analytic expressions for the average cluster number per vertex and correlation length for the bond percolation problem on the $N to infty$ limits of several families of $N$-vertex graphs. Finally, we explore the effect of bond vacancies on families of graphs with the property of bounded diameter as $N to infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا