ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic corrections to correlation decay in two-dimensional random-bond Ising systems

75   0   0.0 ( 0 )
 نشر من قبل Sergio L. A. de Queiroz
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistics of critical spin-spin correlation functions in Ising systems with non-frustrated disorder are investigated on a strip geometry, via numerical transfer-matrix techniques. Conformal invariance concepts are used, in order to test for logarithmic corrections to pure power-law decay against distance. Fits of our data to conformal-invariance expressions, specific to logarithmic corrections to correlations on strips, give results with the correct sign, for the moments of order $n=0-4$ of the correlation-function distribution. We find an interval of disorder strength along which corrections to pure-system behavior can be decomposed into the product of a known $n$-dependent factor and an approximately $n$-independent one, in accordance with predictions. A phenomenological fitting procedure is proposed, which takes partial account of subdominant terms of correlation-function decay on strips. In the low-disorder limit, it gives results in fairly good agreement with theoretical predictions, provided that an additional assumption is made.



قيم البحث

اقرأ أيضاً

129 - M. Pleimling 2004
In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated e ffective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure systems critical behaviour.
Using high-precision Monte-Carlo simulations based on a parallel version of the Wang-Landau algorithm and finite-size scaling techniques we study the effect of quenched disorder in the crystal-field coupling of the Blume-Capel model on the square lat tice. We mainly focus on the part of the phase diagram where the pure model undergoes a continuous transition, known to fall into the universality class of the pure Ising ferromagnet. A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement with an early real-space renormalization-group study of the model as well as a very recent numerical work where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning the control parameters of the randomness distribution we also qualitatively investigate the part of the phase diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence indicate a smoothening of the transition to second-order with the presence of strong scaling corrections.
We report results of a Wang-Landau study of the random bond square Ising model with nearest- ($J_{nn}$) and next-nearest-neighbor ($J_{nnn}$) antiferromagnetic interactions. We consider the case $R=J_{nn}/J_{nnn}=1$ for which the competitive nature o f interactions produces a sublattice ordering known as superantiferromagnetism and the pure system undergoes a second-order transition with a positive specific heat exponent $alpha$. For a particular disorder strength we study the effects of bond randomness and we find that, while the critical exponents of the correlation length $ u$, magnetization $beta$, and magnetic susceptibility $gamma$ increase when compared to the pure model, the ratios $beta/ u$ and $gamma/ u$ remain unchanged. Thus, the disordered system obeys weak universality and hyperscaling similarly to other two-dimensional disordered systems. However, the specific heat exhibits an unusually strong saturating behavior which distinguishes the present case of competing interactions from other two-dimensional random bond systems studied previously.
74 - P.E. Berche 2002
We investigate by Monte Carlo simulations the critical properties of the three-dimensional bond-diluted Ising model. The phase diagram is determined by locating the maxima of the magnetic susceptibility and is compared to mean-field and effective-med ium approximations. The calculation of the size-dependent effective critical exponents shows the competition between the different fixed points of the model as a function of the bond dilution.
122 - F. A. Bagamery 2005
We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criteri on. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent, u=2.005(5), corresponds to that expected in a system with isotropic correlated long-range disorder, whereas the scaling dimension of the magnetization density, x_m=0.1294(7), is somewhat larger than in the pure system. Conformal properties of the magnetization and energy density profiles are also examined numerically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا