ترغب بنشر مسار تعليمي؟ اضغط هنا

A-site Ordering versus Electronic Inhomogeneity in CMR-Manganite Films

638   0   0.0 ( 0 )
 نشر من قبل Vasily Moshnyaga Prof.
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial La3/4Ca1/4MnO3/MgO(100) (LCMO) thin films show unusual rhombohedral (R-3c) structure with a new perovskite superstructure due to unique ordering of La and Ca at the A-site positions. Very sharp insulator-metal and para-ferromagnetic phase transitions at temperatures up to TMI ~ TC=295 K were observed. The ordered films were electronically homogeneous down to 1 nm scale as revealed by scanning tunnelling microscopy/spectroscopy. In contrast, orthorhombic and A-site disordered LCMO demonstrate broadened phase transitions as well as mesoscopic phase separation for T<<TC. The unique La/Ca ordering suppresses cation mismatch stress within one super-cell, a~1.55 nm, enhancing electronic homogeneity. Phase separation scenario seems not to be a unique mechanism for CMR as very large CMR=500 % was also observed in A-site ordered films.

قيم البحث

اقرأ أيضاً

In doped manganites, the strong electron-phonon coupling due to the Jahn-Teller effect localizes the conduction-band electrons as polarons. This results in polarons are carriers responsible for transport and ferromagnetic ordering rather than the bar e eg electrons, and sequentially polaron exchange model is emerged for describing ferromagnetic ordering. In Pr0.7(Sr1-xCax)0.3MnO3(x=0.3-0.6) epitaxial thin films, for higher-temperature paramagnetic state and lower-temperature ferromagnetic state, both the temperature dependent transports present behaviors of small polaron; for paramagnetic-ferromagnetic transition, the experimental data of Curie temperature are well described by an energy balance expression induced by polaron exchange model. These results demonstrate that the polaron models are proper ways to describe the strongly correlated electrons in the doped manganites.
We investigated the inhomogeneous electronic properties at the surface and interior of VO_{2} thin films that exhibit a strong first-order metal-insulator transition (MIT). Using the crystal structural change that accompanies a VO_{2} MIT, we used bu lk-sensitive X-ray diffraction (XRD) measurements to estimate the fraction of metallic volume p^{XRD} in our VO_{2} film. The temperature dependence of the p$^{XRD}$ was very closely correlated with the dc conductivity near the MIT temperature, and fit the percolation theory predictions quite well: $sigma$ $sim$ (p - p_{c})^{t} with t = 2.0$pm$0.1 and p_{c} = 0.16$pm$0.01. This agreement demonstrates that in our VO$_{2}$ thin film, the MIT should occur during the percolation process. We also used surface-sensitive scanning tunneling spectroscopy (STS) to investigate the microscopic evolution of the MIT near the surface. Similar to the XRD results, STS maps revealed a systematic decrease in the metallic phase as temperature decreased. However, this rate of change was much slower than the rate observed with XRD, indicating that the electronic inhomogeneity near the surface differs greatly from that inside the film. We investigated several possible origins of this discrepancy, and postulated that the variety in the strain states near the surface plays an important role in the broad MIT observed using STS. We also explored the possible involvement of such strain effects in other correlated electron oxide systems with strong electron-lattice interactions.
369 - Aga Shahee , N. P. Lalla 2015
Low as well as high-temperature electron and x-ray diffraction studies have been carried out on a rare-earth free B-site disordered electron-doped manganite SrMn0.875.Mo0.125O3-{delta} in the temperature range of 83K to 637K. These studies reveal the occurrence of strong charge ordering (CO) at room temperature in a pseudo tetragonally distorted perovskite phase with space-group Pmmm. Non integral modulation vector of 8.95 times along [-110] indicates a charge density wave type modulation. The CO phase with basic perovskite structure Pmmm transforms to a charge disorder cubic phase through a first order phase transition at 355K. Supporting temperature dependent measurements of resistance and magnetization show a metal-insulator and antiferromagnetic transitions across 355K with a wide hysterisis ranging from 150K to 365K. The occurrence of pseudo tetragonality of the basic perovskite lattice with c/a < 1 together with charge-ordered regions with 2-dimensional modulation have been analyzed as the coexistence of two CO phases with 3dx2/3dy2 type and 3dx2-y2 type orbital ordering.
Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.
We have performed x-ray linear and circular magnetic dichroism experiments at the Mn L2,3-edge of the La0.7Sr0.3MnO3 ultra thin films. Our measurements show that the antiferromagnetic (AF) insulating phase is stabilized by the interfacial rearrangeme nt of the Mn 3d orbitals, despite the relevant magnetostriction anisotropic effect on the double-exchange ferromagnetic (FM) metallic phase. As a consequence, the Mn atomic magnetic moment orientation and how it reacts to strain differ in the FM and AF phases. In some cases a FM insulating (FMI) phase adds to the AF and FM. Its peculiar magnetic properties include in-plane magnetic anisotropy and partial release of the orbital moment quenching. Nevertheless the FMI phase appears little coupled to the other ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا