ﻻ يوجد ملخص باللغة العربية
Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the simple face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.
By LDA+U method with spin-orbit coupling (LDA+U+SO) the magnetic state and electronic structure have been investigated for plutonium in delta and alpha phases and for Pu compounds: PuN, PuCoGa5, PuRh2, PuSi2, PuTe, and PuSb. For metallic plutonium in
We present a theoretical model of the electronic structure of delta-Pu that is consistent with many of the electronic structure related properties of this complex metal. In particular we show that the theory is capable of reproducing the valence band
Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new order through complex microscopic interactions that do not occu
Plutonium (Pu), in which the 5$f$ valence electrons always wander the boundary between localized and itinerant states, exhibits quite complex crystal structures and unprecedentedly anomalous properties with respect to temperature and alloying. Unders
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We