ﻻ يوجد ملخص باللغة العربية
Plutonium (Pu), in which the 5$f$ valence electrons always wander the boundary between localized and itinerant states, exhibits quite complex crystal structures and unprecedentedly anomalous properties with respect to temperature and alloying. Understanding its chemical and physical properties, especially its 5$f$ electronic structure is one of the central and unsolved topics in condensed matter theory. In the present work, the electronic structures of the six allotropes of Pu (including its $alpha$, $beta$, $gamma$, $delta$, $delta$, and $epsilon$ phases) at ambient pressure are studied comprehensively by means of the density functional theory in combination with the single-site dynamical mean-field theory. The band structures, total and partial density of states, valence state histograms, 5$f$ orbital occupancies, X-ray branching ratios, and self-energy functions are carefully studied. It is suggested that the $alpha$, $beta$, and $gamma$ phases of Pu are typical Racah metals in which the atomic multiple effect dominates near the Fermi level. The calculated results reveal that not only the $delta$ phase, but also all the six allotropes are archetypal mixed-valence metals with remarkable atomic eigenstate fluctuation. In consequence of that, the 5$f$ occupancy $n_{5f}$ is around 5.1 $sim$ 5.4, which varies with respect to the atomic volume and electronic correlation strength of Pu. The 5$f$ electronic correlation in Pu is moderately orbital-dependent. Moreover, the 5$f$ electrons in the $delta$ phase are the most correlated and localized.
Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the simple face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static no
We have measured the heat capacities of $delta-$Pu$_{0.95}$Al$_{0.05}$ and $alpha-$Pu over the temperature range 2-303 K. The availability of data below 10 K plus an estimate of the phonon contribution to the heat capacity based on recent neutron-sca
Kagome superconductors with Tc up to 7K have been discovered over 40 years. Recently, unconventional chiral charge order has been reported in kagome superconductor KV3Sb5, with an ordering temperature of one order of magnitude higher than the TC. How
We present a theoretical model of the electronic structure of delta-Pu that is consistent with many of the electronic structure related properties of this complex metal. In particular we show that the theory is capable of reproducing the valence band
Recently, rutile RuO$_2$ has raised interest for its itinerant antiferromagnetism, crystal Hall effect, and strain-induced superconductivity. Understanding and manipulating these properties demands resolving the electronic structure and the relative