ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation between structure and properties in multiferroic La$_{0.7}$Ca$_{0.3}$MnO$_3$/BaTiO$_3$ superlattices

165   0   0.0 ( 0 )
 نشر من قبل W. Prellier
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superlattices composed of ferromagnetics, namely La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO), and ferroelectrics, namely, BaTiO$_3$(BTO) were grown on SrTiO$_3$ at 720$^o$C by pulsed laser deposition process. While the out-of-plane lattice parameters of the superlattices, as extracted from the X-ray diffraction studies, were found to be dependent on the BTO layer thickness, the in-plane lattice parameter is almost constant. The evolution of the strains, their nature, and their distribution in the samples, were examined by the conventional sin$^2psi $ method. The effects of structural variation on the physical properties, as well as the possible role of the strain on inducing the multiferroism in the superlattices, have also been discussed.

قيم البحث

اقرأ أيضاً

Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75$pm$ 25 kA/m at 10 K in a La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO)/BiFeO$_3$ superlattice extending from the interface through several atomic layers of the BiFeO$_3$ (BFO ). The induced magnetization in BFO is explained by density functional theory, where the size of bandgap of BFO plays an important role. Considering a classical exchange field between the LSMO and BFO layers, we further show that magnetization is expected to extend throughout the BFO, which provides a theoretical explanation for the results of the neutron scattering experiment.
87 - S. B. Porter 2019
The magnetic dead layers in films a few nanometers thick are investigated for La$_{0.7}$Sr$_{0.3}$MnO$_3$ on (001)-oriented SrTiO$_3$ (STO), LaAlO$_3$ (LAO) and (LaAlO$_3$)$_{0.3}$(Sr$_2$TaAlO$_6$)$_{0.7}$ (LSAT) substrates. An anomalous moment found to persist above the Curie temperature of the La$_{0.7}$Sr$_{0.3}$MnO$_3$ films is not attributed to the films, but to oxygen vacancies at or near the surface of the substrate. The contribution to the moment from the substrate is as high as 20 $mu$B/nm$^2$ in the case of STO or LSAT. The effect is increased by adding an STO cap layer. Taking this d-zero magnetism into account, extrapolated magnetic dead layer thicknesses of 0.8 nm, 1.5 nm and 3.0 nm are found for the manganite films grown on LSAT, STO and LAO substrates, respectively. An STO cap layer eliminates the LSMO dead layer.
109 - K. Chen , C. Luo , B. B. Chen 2020
Charge transfer induced interfacial ferromagnetism and its impact on the exchange bias effect in La$_{0.7}$Sr$_{0.3}$MnO$_3$/NdNiO$_3$ correlated oxide heterostructures were investigated by soft x-ray absorption and x-ray magnetic circular dichroism spectra in a temperature range from 10 to 300 K. Besides the antiferromagnetic Ni$_3^+$ cations which are naturally part of the NdNiO$_3$ layer, Ni$_2^+$ ions are formed at the interface due to a charge transfer mechanism involving the Mn element of the adjacent layer. They exhibit a ferromagnetic behavior due to the exchange coupling to the Mn$_4^+$ ions in the La$_{0.7}$Sr$_{0.3}$MnO$_3$ layer. This can be seen as detrimental to the strength of the unidirectional anisotropy since a significant part of the interface does not contribute to the pinning of the ferromagnetic layer. By analyzing the line shape changes of the x-ray absorption at the Ni L$_{2,3}$ edges, the metal-insulator transition of the NdNiO$_3$ layer is resolved in an element specific manner. This phase transition is initiated at about 120 K, way above the paramagnetic to antiferromagnetic transition of NdNiO$_3$ layer which measured to be 50 K. Exchange bias and enhanced coercive fields were observed after field cooling the sample through the Neel temperature of the NdNiO$_3$ layer. Different from La$_{0.7}$Sr$_{0.3}$MnO$_3$/LaNiO$_3$, the exchange bias observed in La$_{0.7}$Sr$_{0.3}$MnO$_3$/NdNiO$_3$ is due to the antiferromagnetism of NdNiO$_3$ and the frustration at the interface. These results suggest that reducing the interfacial orbital hybridization may be used as a tunable parameter for the strength of the exchange bias effect in all-oxide heterostructures which exhibit a charge transfer mechanism.
Films of cerium-doped LaMnO$_3$, which has been intensively discussed as an electron-doped counterpart to hole-doped mixed-valence lanthanum manganites during the past decade, were analyzed by x-ray photoemission spectroscopy with respect to their ma nganese valence under photoexcitation. The comparative analysis of the Mn 3s exchange splitting of La$_{0.7}$Ce$_{0.3}$MnO$_3$ (LCeMO) films in the dark and under illumination clearly shows that both oxygen reduction and illumination are able to decrease the Mn valence towards a mixed 2$+$/3$+$ state, independently of the film thickness and the degree of CeO$_2$ segregation. Charge injection from the photoconductive SrTiO$_3$ substrate into the Mn e$_g$ band with carrier lifetimes in the range of tens of seconds and intrinsic generation of electron-hole pairs within the films are discussed as two possible sources of the Mn valence shift and the subsequent electron doping.
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie temperature and spontaneous moments of cobalt are gradually suppressed - $T_C=130$ K, 55 K and 25 K and $m = 0.68 mu_B$, 0.34 $mu_B$ and 0.23 $mu_B$ for Nd$_{0.7}$Sr$_{0.3}$CoO$_3$, Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ and Nd$_{0.7}$Ca$_{0.3}$CoO$_3$, respectively. The moment reduction with respect to moment of the conventional ferromagnet La$_{0.7}$Sr$_{0.3}$CoO$_3$ ($T_C=230$ K, $m = 1.71 mu_B$) in so-called IS/LS state for Co$^{3+}$/Co$^{4+}$, was originally interpreted using phase-separation scenario. Based on the present results, mainly the analysis of Schottky peak originating in Zeeman splitting of the ground state Kramers doublet of Nd$^{3+}$, we find, however, that ferromagnetic phase in Nd$_{0.7}$Ca$_{0.3}$CoO$_3$ and likely also Pr$_{0.7}$Ca$_{0.3}$CoO$_3$ is uniformly distributed over all sample volume, despite the severe drop of moments. The ground state of these compounds is identified with the LS/LS-related phase derived theoretically by Sboychakov textit{et al.} [Phys. Rev. B textbf{80}, 024423 (2009)]. The ground state of Nd$_{0.7}$Sr$_{0.3}$CoO$_3$ with an intermediate cobalt moment is inhomogeneous due to competing of LS/LS and IS/LS phases. In the theoretical part of the study, the crystal field split levels for $4f^3$ (Nd$^{3+}$), $4f^2$ (Pr$^{3+}$) and $4f^1$ (Ce$^{3+}$ or Pr$^{4+}$) are calculated and their magnetic characteristics are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا