ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on weak magnetic confinement of neutral atoms

115   0   0.0 ( 0 )
 نشر من قبل Charles Sackett
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. A. Sackett




اسأل ChatGPT حول البحث

It is shown that when a magnetic field is used to support neutral atoms against the gravitational force mg, the total curvature of the field magnitude B must be larger than m^2 g^2/(2 mu^2 B), where mu is the magnetic moment of the atoms. This limits the minimum confinement strength obtainable for a trapped atomic gas. It is also conjectured that the curvature must be larger than twice this value for a magnetic potential that varies in only one or two dimensions, such as an atomic waveguide.

قيم البحث

اقرأ أيضاً

356 - B. Zhang , M. Siercke , K.S. Chan 2012
We propose and analyze neutral atom traps generated by vortices imprinted by magnetic field pulse sequences in type-II superconducting disks and rings. We compute the supercurrent distribution and magnetic field resulting from the vortices in the sup erconductor. Different patterns of vortices can be written by versatile loading field sequences. We discuss in detail procedures to generate quadrupole traps, self-sufficient traps and ring traps based on superconducting disks and rings. The ease of creating these traps and the low current noise in supercurrent carrying structures makes our approach attractive for designing atom chip interferometers and probes.
We demonstrate magnetic confinement of an ultracold neutral plasma (UCNP) created at the null of a biconic cusp, or quadrupole magnetic field. Initially, the UCNP expands due to electron thermal pressure. As the plasma encounters stronger fields, exp ansion slows and the density distribution molds to the field. UCNP electrons are strongly magnetized over most of the plasma, while ion magnetization is only significant at the boundaries. Observations suggest that electrons and ions are predominantly trapped by magnetic mirroring and ambipolar electric fields respectively. Confinement times approach 0.5 ms, while unmagnetized plasmas dissipate on a timescale of a few tens of microseconds.
Neutral atomic Bose condensates and degenerate Fermi gases have been used to realize important many-body phenomena in their most simple and essential forms, without many of the complexities usually associated with material systems. However, the charg e neutrality of these systems presents an apparent limitation - a wide range of intriguing phenomena arise from the Lorentz force for charged particles in a magnetic field, such as the fractional quantum Hall states in two-dimensional electron systems. The limitation can be circumvented by exploiting the equivalence of the Lorentz force and the Coriolis force to create synthetic magnetic fields in rotating neutral systems. This was demonstrated by the appearance of quantized vortices in pioneering experiments on rotating quantum gases, a hallmark of superfluids or superconductors in a magnetic field. However, because of technical issues limiting the maximum rotation velocity, the metastable nature of the rotating state and the difficulty of applying stable rotating optical lattices, rotational approaches are not able to reach the large fields required for quantum Hall physics. Here, we experimentally realize an optically synthesized magnetic field for ultracold neutral atoms, made evident from the appearance of vortices in our Bose-Einstein condensate. Our approach uses a spatially-dependent optical coupling between internal states of the atoms, yielding a Berrys phase sufficient to create large synthetic magnetic fields, and is not subject to the limitations of rotating systems; with a suitable lattice configuration, it should be possible to reach the quantum Hall regime, potentially enabling studies of topological quantum computation.
68 - T. David 2008
We analyze atom-surface magnetic interactions on atom chips where the magnetic trapping potentials are produced by current carrying wires made of electrically anisotropic materials. We discuss a theory for time dependent fluctuations of the magnetic potential, arising from thermal noise originating from the surface. It is shown that using materials with a large electrical anisotropy results in a considerable reduction of heating and decoherence rates of ultra-cold atoms trapped near the surface, of up to several orders of magnitude. The trap loss rate due to spin flips is expected to be significantly reduced upon cooling the surface to low temperatures. In addition, the electrical anisotropy significantly suppresses the amplitude of static spatial potential corrugations due to current scattering within imperfect wires. Also the shape of the corrugation pattern depends on the electrical anisotropy: the preferred angle of the scattered current wave fronts can be varied over a wide range. Materials, fabrication, and experimental issues are discussed, and specific candidate materials are suggested.
We have realized a magnetic guide for ultracold chromium atoms by continuously loading atoms directly from a Zeeman slower into a horizontal guide. We observe an atomic flux of $2 cdot 10^7$ atoms/s and are able to control the mean velocity of the gu ided atoms between 0 m/s and 3 m/s. We present our experimental results on loading and controlling the mean velocity of the guided atoms and discuss the experimental techniques that are used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا