ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic magnetic fields for ultracold neutral atoms

161   0   0.0 ( 0 )
 نشر من قبل Yu-Ju Lin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutral atomic Bose condensates and degenerate Fermi gases have been used to realize important many-body phenomena in their most simple and essential forms, without many of the complexities usually associated with material systems. However, the charge neutrality of these systems presents an apparent limitation - a wide range of intriguing phenomena arise from the Lorentz force for charged particles in a magnetic field, such as the fractional quantum Hall states in two-dimensional electron systems. The limitation can be circumvented by exploiting the equivalence of the Lorentz force and the Coriolis force to create synthetic magnetic fields in rotating neutral systems. This was demonstrated by the appearance of quantized vortices in pioneering experiments on rotating quantum gases, a hallmark of superfluids or superconductors in a magnetic field. However, because of technical issues limiting the maximum rotation velocity, the metastable nature of the rotating state and the difficulty of applying stable rotating optical lattices, rotational approaches are not able to reach the large fields required for quantum Hall physics. Here, we experimentally realize an optically synthesized magnetic field for ultracold neutral atoms, made evident from the appearance of vortices in our Bose-Einstein condensate. Our approach uses a spatially-dependent optical coupling between internal states of the atoms, yielding a Berrys phase sufficient to create large synthetic magnetic fields, and is not subject to the limitations of rotating systems; with a suitable lattice configuration, it should be possible to reach the quantum Hall regime, potentially enabling studies of topological quantum computation.



قيم البحث

اقرأ أيضاً

189 - Daniel Babik 2019
The implementation of the fractional quantum Hall effect in ultracold atomic quantum gases remains, despite substantial advances in the field, a major challenge. Since atoms are electrically neutral, a key ingredient is the generation of sufficiently strong artificial gauge fields. Here we theoretically investigate the synthetization of such fields for bosonic erbium atoms by phase imprinting with two counterpropagating optical Raman beams. Given the nonvanishing orbital angular momentum of the rare-earth atomic species erbium in the electronic ground state and the availability of narrow-line transitions, heating from photon scattering is expected to be lower than in atomic alkali-metal species. We give a parameter regime for which strong synthetic magnetic fields with good spatial homogeneity are predicted. We also estimate the size of the Laughlin gap expected from the s-wave contribution of the interactions for typical experimental parameters of a two-dimensional atomic erbium microcloud. Our analysis shows that cold rare-earth atomic ensembles are highly attractive candidate systems for experimental explorations of the fractional quantum Hall regime.
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest leng th scales, our universe is ruled by gravity, whose gauge structure suggests the existence of a particle - the graviton - that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms feeling laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials - both Abelian and non-Abelian - in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Electromagnetism is a simple example of a gauge theory where the underlying potentials -- the vector and scalar potentials -- are defined only up to a gauge choice. The vector potential generates magnetic fields through its spatial variation and elec tric fields through its time-dependence. We experimentally produce a synthetic gauge field that emerges only at low energy in a rubidium Bose-Einstein condensate: the neutral atoms behave as charged particles do in the presence of a homogeneous effective vector potential. We have generated a synthetic electric field through the time dependence of an effective vector potential, a physical consequence even though the vector potential is spatially uniform.
We start by reviewing the concept of gauge invariance in quantum mechanics, for Abelian and Non-Ableian cases. Then we idescribe how the various gauge potential and field can be associated with the geometrical phase acquired by a quantum mechanical w ave function while adiabatically evolving in a parameter space. Subsequently we show how this concept is exploited to generate light induced gauge field for neutral ultra cold bosonic atoms. As an example of such light induced Abelian and Non Abelian gauge field for ultra cold atoms we disucss ultra cold atoms in a rotating trap and creation of synthetic spin orbit coupling for ultra cold atomic systems using Raman lasers.
194 - Ming-Yong Ye , Xiu-Min Lin 2012
We consider the simulation of non-abelian gauge potentials in ultracold atom systems with atom-field interaction in the $Lambda$ configuration where two internal states of an atom are coupled to a third common one with a detuning. We find the simulat ed non-abelian gauge potentials can have the same structures as those simulated in the tripod configuration if we parameterize Rabi frequencies properly, which means we can design spin-orbit coupling simulation schemes based on those proposed in the tripod configuration. We show the simulated spin-orbit coupling in the $Lambda$ configuration can only be of a form similar to $p_{x}sigma_{y}$ even when the Rabi frequencies are not much smaller than the detuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا