ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical study of Ga-based nanowires and the interaction of Ga with single-wall carbon nanotubes

69   0   0.0 ( 0 )
 نشر من قبل Engin Durgun
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gallium displays physical properties which can make it a potential element to produce metallic nanowires and high-conducting interconnects in nanoelectronics. Using first-principles pseudopotential plane method we showed that Ga can form stable metallic linear and zigzag monatomic chain structures. The interaction between individual Ga atom and single-wall carbon nanotube (SWNT) leads to a chemisorption bond involving charge transfer. Doping of SWNT with Ga atom gives rise to donor states. Owing to a significant interaction between individual Ga atom and SWNT, continuous Ga coverage of the tube can be achieved. Ga nanowires produced by the coating of carbon nanotube templates are found to be stable and high conducting.



قيم البحث

اقرأ أيضاً

118 - Gang Wu , Jian Zhou , 2007
With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by textit{ab initio} method. It is found that both the frequencies and the intensities of the low-frequency Raman active modes almost do not change in the deformed nanotubes, while their high-frequency part shifts obviously. Especially, the high-frequency part shifts linearly with the uniaxial tensile strain, and two kinds of different shift slopes are found for any kind of SWCNTs. More interestingly, new Raman peaks are found in the nonresonant Raman spectra under torsional strain, which are explained by a) the symmetry breaking and b) the effect of bond rotation and the anisotropy of the polarizability induced by bond stretching.
167 - S. Berger 2007
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify t wo main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external non-radiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by non-radiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.
We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the ra dial breathing modes (RBMs) exhibit a different monochromatic frequency between the film and solution samples, indicating the presence of differing exciton excitation processes. By varying the polarization of the incident pump beam on the aligned SWCNT film, we found that the anisotropy of the coherent RBM excitation depends on the laser wavelength, which we consider to be associated with the resonant and off-resonant behavior of RBM excitation.
Photoluminescence (PL) measurements of porphyrin-doped single wall carbon nanotubes (SWNT) were studied in sodium dodecylbenzenesulfonate (NaDDBS) aqueous dispersions. The PL spectra were used to draw PL maps were the maxima corresponds to absorption -emission excitonic processes related to (E11, E22) first Van Hove singularities of the SWNT electronic structure. The influence of the net charge of the porphyrin was a determinant factor in the energy map maximum shifts (EMMS) compared to the energy map of a pristine NaDDBS/SWNT dispersion. A non-interacting porphyrin is used as a reference to discard the influence of the dielectric constant of the medium in the EMMS.
We have studied current-driven domain wall motion in modified Ga_0.95Mn_0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved Polar Magneto-Optical Kerr Effect Microscopy and micromagnetic simulation. Regardless of the initial magnetic configuration, the domain wall propagates in the opposite direction to the current with critical current of 1~2x10^5A/cm^2. Considering the spin transfer torque term as well as various effective magnetic field terms, the micromagnetic simulation results are consistent with the experimental results. Our simulated and experimental results suggest that the spin-torque rather than Oersted field is the reason for current driven domain wall motion in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا