ﻻ يوجد ملخص باللغة العربية
A local-orbital based ab initio approach to obtain the Green function for large heterogeneous systems is developed. First a Green function formalism is introduced based on exact diagonalization. Then the self energy is constructed from an incremental scheme, rendering the procedure feasible, while at the same time physical insight into different local correlation contributions is obtained. Subsequently the Green function is used in the frame of the Landauer theory and the wide band approximation to calculate the electronic transmission coefficient across molecular junctions. The theory is applied to meta- and para-ditholbenzene linked to gold electrodes and various correlation contributions are analyzed.
The conductance of single molecule junctions is calculated using a Landauer approach combined to many-body perturbation theory MBPT) to account for electron correlation. The mere correction of the density-functional theory eigenvalues, which is the s
We present a study of the effects of inelastic scattering on the transport properties of various nanoscale devices, namely H$_2$ molecules sandwiched between Pt contacts, and a spin-valve made by an organic molecule attached to model half-metal ferro
A new type of self-similar potential is used to study a multibarrier system made of graphene. Such potential is based on the traditional middle third Cantor set rule combined with a scaling of the barriers height. The resulting transmission coefficie
We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly de
Gas permeation through nanoscale pores is ubiquitous in nature and plays an important role in a plethora of technologies. Because the pore size is typically smaller than the mean free path of gas molecules, their flow is conventionally described by t