ترغب بنشر مسار تعليمي؟ اضغط هنا

Shot noise of quantum ring excitons in a planar microcavity

56   0   0.0 ( 0 )
 نشر من قبل Yueh-Nan Chen
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shot noise of quantum ring (QR) excitons in a p-i-n junction surrounded by a microcavity is investigated theoretically. Some radiative decay properties of a QR exciton in a microcavity can be obtained from the observation of the current noise, which also gives the extra information about one of the tunnel barriers. Different noise feature between the quantum dot (QD) and QR is pointed out, and may be observed in a suitably designed experiment.

قيم البحث

اقرأ أيضاً

Polariton lattice condensates provide a platform for on chip quantum emulations. Interactions in extended polariton lattices are currently limited by the intrinsic photonic disorder of microcavities. Here, we fabricate a strain compensated planar GaA s/AlAs microcavity with embedded InGaAs quantum wells and report on polariton condensation under non-resonant optical excitation. Evidence of polariton condensation is supported spectroscopically both in reflection and transmission geometry, whilst the observation of a second threshold to photon lasing allows us to conclusively distinguish between the strong- and weak-coupling non-linear regimes.
We report on the first experimental observation of spin noise in a single semiconductor quantum well embedded into a microcavity. The great cavity-enhanced sensitivity to fluctuations of optical anisotropy has allowed us to measure the Kerr rotation and ellipticity noise spectra in the strong coupling regime. The spin noise spectra clearly show two resonant features: a conventional magneto-resonant component shifting towards higher frequencies with magnetic field and an unusual nonmagnetic component centered at zero frequency and getting suppressed with increasing magnetic field. We attribute the first of them to the Larmor precession of free electron spins, while the second one being presumably due to hyperfine electron-nuclei spin interactions.
155 - Gu Xu , Dingzhou Li 1999
We present a comprehensive theoretical description of quantum well exciton-polaritons imbedded in a planar semiconductor microcavity. The exact non-local dielectric response of the quantum well exciton is treated in detail. The 4-spinor structure of the hole subband in the quantum well is considered, including the pronounced band mixing effect. The scheme is self-contained and can be used to treat different semiclassical aspects of the microcavity properties. As an example, we analyze the selection rules for the exciton-cavity mode coupling for different excitons.
Due to high binding energy and oscillator strength, excitons in thin flakes of transition metal dichalcogenides constitute a perfect foundation for realizing a strongly coupled light-matter system. In this paper we investigate mono- and few-layer WSe $_2$ flakes encapsulated in hexagonal boron nitride and incorporated into a planar dielectric cavity. We use an open cavity design which provides tunability of the cavity mode energy by as much as 150 meV. We observe a strong coupling regime between the cavity photons and the neutral excitons in direct-bandgap monolayer WSe$_2$, as well as in few-layer WSe$_2$ flakes exhibiting indirect bandgap. We discuss the dependence of the excitons oscillator strength and resonance linewidth on the number of layers and predict the exciton-photon coupling strength.
We report the results of an analysis, based on a straightforward quantum-mechanical model, of shot noise suppression in a structure containing cascaded tunneling barriers. Our results exhibit a behavior that is in sharp contrast with existing semicla ssical models for this particular type of structure, which predict a limit of 1/3 for the Fano factor as the number of barriers is increased. The origin of this discrepancy is investigated and attributed to the presence of localization on the length scale of the mean free path, as a consequence of the strictly 1-dimensional nature of disorder, which does not create mode mixing, while no localization appears in common semiclassical models. We expect localization to be indeed present in practical situations with prevalent 1-D disorder, and the existing experimental evidence appears to be consistent with such a prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا