ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine structure and magneto-optics of exciton, trion, and charged biexciton states in single InAs quantum dots emitting at 1.3 um

65   0   0.0 ( 0 )
 نشر من قبل Nic Cade
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation into the optical characteristics of individual InAs quantum dots (QDs) grown by metalorganic chemical vapor deposition, with low temperature emission in the telecoms window around 1300 nm. Using micro-photoluminescence (PL) spectroscopy we have identified neutral, positively charged, and negatively charged exciton and biexciton states. Temperature-dependent measurements reveal dot-charging effects due to differences in carrier diffusivity. We observe a pronounced linearly polarized splitting of the neutral exciton and biexciton lines (~250 ueV) resulting from asymmetry in the QD structure. This asymmetry also causes a mixing of the excited trion states which is manifested in the fine structure and polarization of the charged biexciton emission; from this data we obtain values for the ratio between the anisotropic and isotropic electron-hole exchange energies of (Delta1)/(Delta0)= 0.2--0.5. Magneto-PL spectroscopy has been used to investigate the diamagnetic response and Zeeman splitting of the various exciton complexes. We find a significant variation in g-factor between the exciton, the positive biexciton, and the negative biexciton; this is also attributed to anisotropy effects and the difference in lateral extent of the electron and hole wavefunctions.

قيم البحث

اقرأ أيضاً

116 - Xuefei Wu , Hai Wei , Xiuming Dou 2013
We demonstrate that the exciton and biexciton emission energies as well as exciton fine structure splitting (FSS) in single (In,Ga)As/GaAs quantum dots (QDs) can be efficiently tuned using hydrostatic pressure in situ in an optical cryostat at up to 4.4 GPa. The maximum exciton emission energy shift was up to 380 meV, and the FSS was up to 180 $mu$eV. We successfully produced a biexciton antibinding-binding transition in QDs, which is the key experimental condition that generates color- and polarization-indistinguishable photon pairs from the cascade of biexciton emissions and that generates entangled photons via a time-reordering scheme. We perform atomistic pseudopotential calculations on realistic (In,Ga)As/GaAs QDs to understand the physical mechanism underlying the hydrostatic pressure-induced effects.
72 - N. I. Cade , H. Gotoh , H. Kamada 2005
We have studied the emission properties of self-organized InAs quantum dots (QDs) grown in an InGaAs quantum well by metalorganic chemical vapor deposition. Low-temperature photoluminescence spectroscopy shows emission from single QDs around 1300 nm; we clearly observe the formation of neutral and charged exciton and biexciton states, and we obtain a biexciton binding energy of 3.1 meV. The dots exhibit an s-p shell splitting of approximately 100 meV, indicating strong confinement.
66 - N. I. Cade , H. Gotoh , H. Kamada 2006
We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550 nm with characteristic exciton-biexciton behavior, and a biexciton antibinding energy of more than 2 meV. Temperature-dependent measurements reveal negligible optical-phonon induced broadening of the exciton line up to 50 K, and emission from the exciton state clearly persists above 70 K. Furthermore, we find no measurable polarized fine structure splitting of the exciton state within the experimental precision. These results are encouraging for the development of a controllable photon source for fiber-based quantum information and cryptography systems.
The optical spectroscopy of a single InAs quantum dot doped with a single Mn atom is studied using a model Hamiltonian that includes the exchange interactions between the spins of the quantum dot electron-hole pair, the Mn atom and the acceptor hole. Our model permits to link the photoluminescence spectra to the Mn spin states after photon emission. We focus on the relation between the charge state of the Mn, $A^0$ or $A^-$, and the different spectra which result through either band-to-band or band-to-acceptor transitions. We consider both neutral and negatively charged dots. Our model is able to account for recent experimental results on single Mn doped InAs PL spectra and can be used to account for future experiments in GaAs quantum dots. Similarities and differences with the case of single Mn doped CdTe quantum dots are discussed.
In a charge tunable device, we investigate the fine structure splitting of neutral excitons in single long-wavelength (1.1mu m < lambda < 1.3 mu m) InGaAs quantum dots as a function of external uniaxial strain. Nominal fine structure splittings betwe en 16 and 136 mu eV are measured and manipulated. We observe varied response of the splitting to the external strain, including positive and negative tuning slopes, different tuning ranges, and linear and parabolic dependencies, indicating that these physical parameters depend strongly on the unique microscopic structure of the individual quantum dot. To better understand the experimental results, we apply a phenomenological model describing the exciton polarization and fine-structure splitting under uniaxial strain. The model predicts that, with an increased experimental strain tuning range, the fine-structure can be effectively canceled for select telecom wavelength dots using uniaxial strain. These results are promising for the generation of on-demand entangled photon pairs at telecom wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا