ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton fine-structure splitting of telecom wavelength single quantum dots: statistics and external strain tuning

103   0   0.0 ( 0 )
 نشر من قبل Luca Sapienza
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a charge tunable device, we investigate the fine structure splitting of neutral excitons in single long-wavelength (1.1mu m < lambda < 1.3 mu m) InGaAs quantum dots as a function of external uniaxial strain. Nominal fine structure splittings between 16 and 136 mu eV are measured and manipulated. We observe varied response of the splitting to the external strain, including positive and negative tuning slopes, different tuning ranges, and linear and parabolic dependencies, indicating that these physical parameters depend strongly on the unique microscopic structure of the individual quantum dot. To better understand the experimental results, we apply a phenomenological model describing the exciton polarization and fine-structure splitting under uniaxial strain. The model predicts that, with an increased experimental strain tuning range, the fine-structure can be effectively canceled for select telecom wavelength dots using uniaxial strain. These results are promising for the generation of on-demand entangled photon pairs at telecom wavelengths.

قيم البحث

اقرأ أيضاً

113 - Xuefei Wu , Hai Wei , Xiuming Dou 2013
We demonstrate that the exciton and biexciton emission energies as well as exciton fine structure splitting (FSS) in single (In,Ga)As/GaAs quantum dots (QDs) can be efficiently tuned using hydrostatic pressure in situ in an optical cryostat at up to 4.4 GPa. The maximum exciton emission energy shift was up to 380 meV, and the FSS was up to 180 $mu$eV. We successfully produced a biexciton antibinding-binding transition in QDs, which is the key experimental condition that generates color- and polarization-indistinguishable photon pairs from the cascade of biexciton emissions and that generates entangled photons via a time-reordering scheme. We perform atomistic pseudopotential calculations on realistic (In,Ga)As/GaAs QDs to understand the physical mechanism underlying the hydrostatic pressure-induced effects.
86 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
Quantum dots (QDs) can act as convenient hosts of two-level quantum szstems, such as single electron spins, hole spins or excitons (bound electron-hole pairs). Due to quantum confinement, the ground state of a single hole confined in a QD usually has dominant heavy-hole (HH) character. For this reason light-hole (LH) states have been largely neglected, despite the fact that may enable the realilzation of coherent photon-to-spin converters or allow for faster spin manipulation compared to HH states. In this work, we use tensile strains larger than 0.3% to switch the ground state of excitons confined in high quality GaAs/AlGaAs QDs from the conventional HH- to LH-type. The LH-exciton fine structure is characterized by two in-plane-polarized lines and, ~400 micro-eV above them, by an additional line with pronounced out-of-plane oscillator strength, consistent with theoretical predictions based on atomistic empirical pseudopotential calculations and a simple mesoscopic model.
Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of s uch a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.
The fine structure of the neutral exciton in a single self assembled InGaAs quantum dot is investigated under the effect of a lateral electric field. Stark shifts up to 1.5 meV, an increase in linewidth, and a decrease in photoluminescence intensity were observed due to the electric field. We show that the lateral electric field strongly affects the exciton fine structure splitting due to active manipulation of the single particle wave-functions. Remarkably, the splitting can be tuned over large values and through zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا