ﻻ يوجد ملخص باللغة العربية
We have performed thermal expansion and compressibility measurements on the recently discovered superconducting material NaxCoO2*4xD2O (x=1/3) using neutron powder diffraction over the temperature range 10-295 K and the pressure range 0-0.6 GPa. Pressure measurements were done in a helium-gas pressure cell. Both the thermal expansion and compressibility are very anisotropic, with the largest effects along the c axis, as would be expected for a layered material with weak hydrogen bonding nominally along the c axis. Near room temperature, the anisotropies of the thermal expansion and compressibility of the hexagonal crystal structure are nearly the same [(Dc/c)/(Da/a)=3-4], with a 100 C change in temperature being roughly equivalent to 0.2 GPa pressure. This would imply that changes in atom position parameters are also the same, but this is not the case. While the effects of temperature on the atom positions are essentially what one might expect, the effects of pressure are surprising. With increasing pressure, the thickness of the CoO2 layer increases, due to the combined effects of an increasing Co-O bond length and changes in the O-Co-O angles of the CoO6 octahedra. We conclude that this unusual effect results from pressure-induced strengthening of the hydrogen bonding between the Nax(D2O)4x layers and the CoO2 layers. The strengthening of these hydrogen bonds requires that charge be moved from the somewhere else in the structure; hence, there is a pressure induced charge redistribution that weakens (lengthens) the Co-O bonds and changes the electronic structure of the superconducting CoO2 layers.
We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a sig
The fluorine-doped rare-earth iron oxypnictide series SmFeAsO$_{1-x}$F$_x$ (0 $leq x leq$ 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies, the parent compound SmFeAsO exhibits a tetragonal-to-or
Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its anhydrous parent compo
By means of synchrotron X-ray diffraction, we studied the effect of high pressure, P, up to 13 GPa on the room temperature crystal structure of superconducting CaC6. In this P range, no change of the pristine space group symmetry, textit{R=3m}, is fo
Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing o