ﻻ يوجد ملخص باللغة العربية
Magnetoresistance measurements have been performed on a gated two-dimensional electron system (2DES) separated by a thin barrier layer from a layer of InAs self-assembled quantum dots (QDs). Clear features of the quantum Hall effect were observed despite the proximity of the QDs layer to the 2DES. However, the magnetoresistance ($rho_{xx}$) and Hall resistance ($rho_{xy}$) are suppressed significantly in the magnetic field range of filling factor $ u<1$ when a positive voltage is applied to the front gate. The influence of the charge state in QDs was observed on the transport properties of the nearby 2DES only in the field range of $ u < 1$. It is proposed that the anomalous suppression of $rho_{xx}$ and $rho_{xy}$ is related to spin excitation, which is induced by spin-flip processes involving electrons in the QDs and the 2DES.
We propose a random matrix theory to describe the influence of a time-dependent external field on electron transport through open quantum dots. We describe the generation of the current by an oscillating field for the dot, connected to two leads with
We show that correlated two-particle backscattering can induce fractional charge oscillations in a quantum dot built at the edge of a two-dimensional topological insulator by means of magnetic barriers. The result nicely complements recent works wher
We consider the electronic transport through a Rashba quantum dot coupled to ferromagnetic leads. We show that the interference of localized electron states with resonant electron states leads to the appearance of the Fano-Rashba effect. This effect
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
A dilute concentration of magnetic impurities can dramatically affect the transport properties of an otherwise pure metal. This phenomenon, known as the Kondo effect, originates from the interactions of individual magnetic impurities with the conduct